
 GSI Lumonics Scan Controller User Manual

P/N 7OM-015
Rev 1.21
Revision Date: Dec. 15, 1999
 Copyright 1998, 1999 GSI Lumonics, Inc.

2

GSI Lumonics Scan Controller User Manual

Contents:
1. System Overview
2. System Interconnection
3. Software Overview
4. Tutorial: Writing Scan Controller programs
5. Special System Topics
6. Command Reference
7. Binary Command Format:
8. Scan Controller error codes
9. Binary Interface Definition
10. Program to generate CRC

System Overview

The Scan Controller is a small intelligent system intended to control one or two axes of the GSI Lumonics SAX family
of scanner servo amplifiers, and associated peripherals. It will work in either a stand-alone configuration or in
conjunction with a host computer. The basic components of a complete system consist of the following:

1. One or two axes of SAX/Galvo micropositioning
2. One SC2000 Scan Controller
3. Cabling
4. Power Supply
5. A host computer (for setup and optionally for operation), including software
6. Other system components interfaced to the Scan Controller

The Scan Controller is programmed through its communications interface (J1) using either the GSI Lumonics supplied
LabVIEW™1 interface, or customer-designed host-side software. For stand-alone operation, this programming will
result in a sequence of user programs stored in the Scan Controller’s local nonvolatile (FLASH) memory. These
programs will run automatically at system power-up. For operation in conjunction with a host computer, the system
designer can choose a mode of operation between the controller and the host anywhere on the continuum between totally
autonomous and tightly coupled.

The Scan Controller interfaces directly to the position command, position feedback, and binary communications of one
or two SAX single axis servos. This allows not only full position control of the system, enable and status interlock and
but also allows position feedback, galvo temperature status and calibration information to be read digitally by the host
computer.

In addition to controlling two SAX single axis servos, the Scan Controller has hooks to aid in the interface and control of
other peripherals typically associated with these systems. These include sync inputs and outputs, a pixel clock system, a
calibration/data capture system, and other functionality available to volume OEM system designers. Figure 1 and Figure
2 show block diagrams of typical systems.

1 LabVIEW is a trademark of National Instruments Corporation

4

host

Scan ControllerStandard
Serial Port

SAX

SAX

Figure 1 Scan Controller with host computer

Scan Controller

SAX

SAX

Switches can control
program execution in
standalone operation

Figure 2 Typical standalone system

5

System Interconnection

Figure 3: Bracket Assembly

The bracket assembly is shown in Figure 3 (units are inches). The Scan Controller bracket consists of an aluminum L-
bracket with two #8 clearance holes located on the riser. The circuit board standoff nearest J4 also serves as the heatsink
mounting point for the 5-volt regulator.

A sketch of the top view of the Scan Controller is shown in Figure 4, with its pinout shown in Figure 5, and a system
interconnection diagram in Figure 6.

SAX Interface
Figure 7 shows the specific interconnection of the SAX interface when the Scan Controller is attached to two SAX servo
amplifiers. Figure 8 shows the interconnection between Scan Controller and a single SAX amplifier. Note that the
~Temp_OK and ~Servo_Rdy inputs have been grounded out for the unused axis.

The operation of the SAX interlock circuitry bears some discussion. There are three signals interconnecting each SAX
and the Scan Controller:

~Servo_Rdy SAX output indicates functioning servo
~Temp_OK SAX thermal controller output indicates temperature in

regulation
~Servo_Enb SAX input required for servo operation

(typically, ~Servo_Enb is
asserted, and within a second or
so ~Servo_Rdy goes true if the
servo is functional)

The interlock system is as follows:
On system powerup, ~Servo_Enb and ~Servo_Rdy are unasserted. When the user desires to operate one or
both axes, the Enable command is given, causing ~Servo_Enb to go low for the enabled axes. After a wait
period of about 2 seconds, the Scan Controller expects ~Servo_Rdy to be asserted, and to stay asserted until the
Disable command is given. Any activity on the ~Servo_Rdy signal until then is cause for an error condition
to be generated, halting program execution, and causing ~Servo_Enb to be unasserted.

J1

J4

J7 J2 J6

J3

J8

2.50
4.40

.75

2.00

6

Use of this interlock system is optional – users can simply tie the ~Servo_Enb signal to the SAX low (disconnecting it
from the Scan Controller ~Servo_Enb signal), and similarity tie the ~Servo_Rdy input to the Scan Controller low. This
is shown with the unused axis in Figure 8, and with both axes in Figure 9.

The ~Temp_OK signal is not used in the software interlock, but can be used to qualify conditionals in programs, and can
be read by the host computer (program operation can be delayed at powerup until the system temperature is stable.

Power Supply
Figure 11 shows the interconnection between the SAX, Scan Controller, and a +/- 15v system power supply. If the
system requires rails higher than +/- 15v, the Scan Controller may need heat sinking in addition to its simple L bracket to
keep its regulator adequately cool. Finding the best system chassis grounding point is a major issue. A single ground
point usually gives best performance. It can be at the Scan Controller, the SAX, the galvo, or the host computer.

The +5V in/out pin provides additional flexibility. As shown in Figure 10, this can be utilized to drive small auxiliary
loads, like pull-ups on logic lines, or small laser diodes. The available current is a function of the end-user’s packaging
and rail voltage (the major constraint is heating of the 5v regulator on the Scan Controller). Under some circumstances,
OEM design-ins may choose to utilize an external 5v supply, to minimize dissipation at the Scan Controller. This may be
advisable if very high rails are used for the SAX (+/- 24v).

Sync / Cal
The Sync/Cal connector provides access to the synchronization/calibration I/O as well as the pixel clock output of the
Scan Controller. These signals are broken down as follows:

Sync[1..4] Connector
pins 1-4

These are open-drain outputs.
They can sink up to 100mA
continuous, and withstand peaks
of 40v

Written through the SetSync
and UnSetSync commands.

Read through the WaitSync and
If commands (this allows a
mechanism for inter-program
control)

Sync[5..8] Pins 6-9 These are CMOS inputs with 10K
Ohm pull-down resistors.

Read through the WaitSync and
If commands

Sync/Cal[9..12] Pins 10-13 These are CMOS inputs with 10K
Ohm pull-down resistors.

Read through the WaitSync and
If commands. Also load the
relevant Cal registers on a low to
high transition. These are visible
to the host upon issuing an
?OpticalCal command.

Sync[13] NA Controls operation of the
position-based Pixel clock (opens
the PLL tracking loop)

Written through the SetSync
and UnSetSync commands.

Sync[14] NA Gates the output of the Pixel
clock

Written through the SetSync
and UnSetSync commands.

Figure 10 shows a system using one of the (open drain) sync outputs and the auxiliary 5v output to power and control a
diode laser module. The sync output is used to modulate the lasers light output, and coordinate it with beam motion.

7

J1 (serial connector)

J4 (Sync/Cal connector)

J6 (temp y connector)

J3 (X SAX connector)

J7 (temp x connector)

J8 (Y SAX connector)

4"

2"

J2
(power

connector)

Figure 4 Top view of Scan Controller

X +Command
X -Command
X GND
X ~TEMP_OK
X ~SERVO_ENB
X ~SERVO_RDY

X FBPOS-

Y +Command
Y -Command
Y GND
Y ~TEMP_OK
Y ~SERVO_ENB
Y ~SERVO_RDY

Y FBPOS-Pixel Clock Output

~CTS RS485in
TXD RS485out

RXD RS485in

~RTS RS485out

sync 1 (out)
sync 2 (out)
sync 3 (out)
sync 4 (out)

sync 5 (in)
sync6 (in)
sync7 (in)
sync8(in)
sync/cal 9(in)
sync/cal 10(in)
sync/cal 11(in)
sync/cal 12(in)

Pixel Clock GND

Sync GND

+5V in/out
+Vin
GND
-Vin

Temp X

Temp Gnd
Temp Y

Temp Gnd

Mates with GSI supplied serial cable

Mate with:
Molex #51021-1400 shell
Molex #50079-8100 or 50079-8000 pins

Mates with:
Molex #51021-1500 shell
Molex #50079-8100 or 50079-8000 pins

Mates with:
Molex #51021-0400 shell
Molex #50079-8100 or 50079-8000 pins

Y PFBPOS+

X PFBPOS+

J2

Pwr connector
1
2
3
4

J6

Temp Y connector

1
2

J7

Temp X connector

1
2

J3

Sax X Axis

1
2
3
4
5
6
7
8

J8

Sax Y Axis

1
2
3
4
5
6
7
8

J1

serial interface connector

1
2
3
4
5
6

7

8

9

J4

Sync / Cal connector

.
1

.
2

.
3

.
4

.
5

.
6

.
7

.
8

.
9

.
10

.
11

.
12

.
13

.
14

.
15

Figure 5 Pinout of Scan Controller

8

Scan Controller

J2 PWR[1..4]

J3 SAX[1..8]

J1 Serial[1..6]

J4 Sync/Cal[1..15]
J8 SAX[1..8]

SAX X Axis

J1 Pwr[1..4]

J2 Signal[1..8]

SAX Y Axis

J1 Pwr[1..4]

J2 Signal[1..8]

To Power Supply (+/- 15V)

To Host Computer

Figure 6 SAX connected to Scan Controller

10

X +Command
X -Command
X GND
X ~TEMP_OK
X ~SERVO_ENB
X ~SERVO_RDY

X FBPOS-

Y +Command
Y -Command
Y GND
Y ~TEMP_OK
Y ~SERVO_ENB
Y ~SERVO_RDY

Y FBPOS-

"X Axis" SAX

"Y Axis" SAXScan Controller J8

X PFBPOS+

Y PFBPOS+

Scan Controller J3

+COMMAND
-COMMAND

FBPOS+
FBPOS-

-SERVO_RDY
-SERVO_ENB
-TEMP_OK

FBPOS-

-COMMAND

-SERVO_RDY

+COMMAND

-SERVO_ENB

FBPOS+

-TEMP_OK

J2

647047-8

1
2
3
4
5
6
7
8

J2

647047-8

1
2
3
4
5
6
7
8

J3

Molex 1.25mm 8p header

1
2
3
4
5
6
7
8

J8

Molex 1.25mm 8p header

1
2
3
4
5
6
7
8

CN?

Molex 1,25 mm 8p receptacle

1
2
3
4
5
6
7
8

CN?

Molex 1,25 mm 8p receptacle

1
2
3
4
5
6
7
8

CN?

AMP 770602-8

1
2
3
4
5
6
7
8

CN?

AMP 770602-8

1
2
3
4
5
6
7
8

Figure 7 Scan Controller to 2X SAX interconnection diagram

X GND

Scan Controller J8

X ~TEMP_OK

X ~SERVO_RDY

X -Command

"X Axis" SAX

Y +Command

X FBPOS-

Y ~SERVO_ENB
Y ~TEMP_OK
Y GND
Y -Command

X +Command

Y FBPOS-

Y ~SERVO_RDY

X ~SERVO_ENB

X FBPOS+

X FBPOS+

Scan Controller J3

FBPOS-

-COMMAND

-SERVO_ENB

FBPOS+

-TEMP_OK

-SERVO_RDY

+COMMAND
J2

647047-8

1
2
3
4
5
6
7
8

CN?

AMP 770602-8

1
2
3
4
5
6
7
8

CN?

AMP 770602-8

1
2
3
4
5
6
7
8

CN?

Molex 1,25 mm 8p receptacle

1
2
3
4
5
6
7
8

CN?

Molex 1,25 mm 8p receptacle

1
2
3
4
5
6
7
8

Molex 1.25mm 8p header

1
2
3
4
5
6
7
8

Molex 1.25mm 8p header

1
2
3
4
5
6
7
8

Figure 8 Scan Controller to 1X SAX interconnection diagram

11

X GND

Scan Controller J3

X ~TEMP_OK

X ~SERVO_RDY

X -Command

"X Axis" SAX

"Y Axis" SAX

Y +Command

X FBPOS-

Y ~SERVO_ENB
Y ~TEMP_OK
Y GND
Y -Command

X +Command

Y FBPOS-

Y ~SERVO_RDY

X ~SERVO_ENB

X FBPOS+

Y FBPOS+

Scan Controller J8

+COMMAND

-SERVO_RDY

FBPOS-

-COMMAND

FBPOS-

-COMMAND

FBPOS+

-SERVO_ENB

-SERVO_ENB

FBPOS+

-TEMP_OK

-TEMP_OK

-SERVO_RDY

+COMMAND
J2

647047-8

1
2
3
4
5
6
7
8

J2

647047-8

1
2
3
4
5
6
7
8

J?

Molex 1.25mm 8p header

1
2
3
4
5
6
7
8

CN?

AMP 770602-8

1
2
3
4
5
6
7
8

J?

Molex 1.25mm 8p header

1
2
3
4
5
6
7
8

CN?

AMP 770602-8

1
2
3
4
5
6
7
8

Molex 1.25mm 8p header

1
2
3
4
5
6
7
8

Molex 1.25mm 8p header

1
2
3
4
5
6
7
8

Figure 9 2X SAX without Enable interlock

Scan Controller

J3 SAX[1..8]

J1 Serial[1..6]

J4 Sync/Cal[1..15]

J8 SAX[1..8]

X axis SAX

J2 Signal[1..8]

Y axis SAX

J2 Signal[1..8]

-Vin

+Vin
+5V in/out

GND

~Temp_OK

-Vin
GND
+Vin

System Power Supply

To Host Computer

~Temp_OK

-Vin

+Vin
GND

Pixel Clock Output

sync 1 (out)
sync 2 (out)
sync 3 (out)
sync 4 (out)

sync 5 (in)
sync6 (in)
sync7 (in)
sync8(in)
sync/cal 9(in)
sync/cal 10(in)
sync/cal 11(in)
sync/cal 12(in)

Pixel Clock GND

Sync GND
Intensity Control

+15v

-15V

J1

Pwr connector

1
2
3
4

J1

Pwr connector

1
2
3
4

J2

Pwr connector

1
2
3
4

J4

Sync / Cal connector

.
1

.
2

.
3

.
4

.
5

.
6

.
7

.
8

.
9

.
10

.
11

.
12

.
13

.
14

.
15

Laser Diode Module

R1
4.7k pullup

Figure 10 Two-axis system with laser diode control

12

-Vin

+Vin
+5V in/out

Mates with:
Molex #51021-0400 shell
Molex #50058-8100 pins

GND

~Temp_OK

-Vin
GND
+Vin

System Power Supply

Mates with:
Panduit CE100F22-8-D

Scan Controller SAX

J2

Pwr connector

1
2
3
4

J1

Pwr connector

1
2
3
4

+15v

-15V

Figure 11 Typical Power Supply configuration

13

Software Overview
The LabVIEW™ software furnished with the Scan Controller allows users to easily and quickly communicate with the
system. It is intended primarily as an environment for designing and programming stand-alone applications, and for
system evaluation. Pieces of the code can be utilized in host-based real-time systems, but that is not its primary intent.
Other LabVIEW™ code intended for real-time use, as well as Visual Basic support code may become available as the
need arises.

The code is available in a number of forms:
As LabVIEW™ 4.1 or 5.0 VIs Requires that the user own a

LabVIEW™ programming
environment

Cost structure yet undetermined –
distribution with or without block
diagrams, etc. TBD

As LabVIEW™ 4.1 compiled
standalone code

Distributed with the system For Win-95 or Win-NT 4.0
systems only

Software Installation

The LabVIEW™ application is presently furnished on CDROM. Alternately, 4 floppy disks can be generated from the
CDROM; read the ReadMe.txt file for the latest information and changes. The software is installed by running
‘<CDROM>:\install\setup.exe’. The setup program will create a default installation directory (typically C:\GSI), install
the application and support files, create a program group and add an item in the Windows start menu.

Preparation
Connect the Scan Controller serial cable to an available port on the host computer, connect the SAX modules and turn
the Scan Controller power ON.

14

Program Startup
The Command Line Interface program is invoked either from the Windows Start menu or by a double-mouse-click on its
icon (located in the default folder.) The main program window will rise as shown in Figure 12 and the program will
begin executing by running the initialization step. During initialization, the Ready light will remain red indicating that
user operations cannot be serviced. Please do not press any buttons until the Ready light turns green.

Figure 12 CommandLine Interface Main Window

15

Window Descriptions
The initialization step will automatically raise the Serial Port selector sub-window asking you to set the serial port device
for Scan Controller communications (see Figure 13). The port names used in the program are similar to the Windows
designations, COM1, COM2, COM3 and COM4. Select a port designation either by a left-mouse-click in the body of the
control to view all ports available or by flipping through the list of available ports by left-mouse-clicking on the up/down
triangles. Press Done to enter your selection of serial port.

Expert  The Command Line Interface program ‘remembers’ the Serial Port selection while loaded in RAM and the
next time the program is started, it will use the previous Serial Port selection without popping up the Serial Port selector
sub-window. This behavior can cause problems during initial trials on a new computer because an incorrect serial port
may be automatically selected, and the only way to clear the selection is to close the Command Line Interface program
and reopen from disk. A backdoor for this situation is provided by pressing Almost Done after selecting the serial port.
Almost Done will enter your Serial Port selection but will not enable the automatic selection mechanism. If the Comm
Port selection is incorrect, simply 1) stop the program with the Done button, located in the upper right corner of the Main
Window and 2) restart the Command Line; you will be prompted to select a Serial Port once again.

List of available serial ports.

Saves serial port
selection while

program is in RAM.

Configures serial port
for this run only.

Figure 13 Serial Port Declaration

16

Baud Rate indicator.
Shows the current
Baud Rate setting of
the host computer.

Ready light.
Green when the command line
is ready for a new command.
Red when the command line is
busy.

Command History
New commands entered in the command line
are saved here. Double click on a selection in
this box to paste it into the Command line.

Error Report.
Errors in
communication
are reported here.

Figure 14 Status Displays

17

Status Displays
The Status Displays (shown in expanded view in Figure 14) report back information about the operation of the
Command Line interface with the Scan Controller. Errors can be checked here, the current communications baud rate is
shown, as well as a ‘busy’ signal when the program is involved with a time consuming operation. Finally, the command
history (20 deep) of Scan Controller commands entered in from the command line is available for re-execution with a
simple double-mouse-click.

Error Report
Error messages are reported to the operator through the Communications Error window. If there is a problem talking to
the Scan Controller or if there is some internal error or assembler error, a message will be displayed describing the
problem. In addition, the indicator “no error” will turn from gray to red clearly indicating that there was an error during
the last command. The error display can be cleared by pressing the <enter> key with no command entered in the
command line, key focus on the command line.

Command History
A list box in the bottom center of the main screen shows the last 20 commands entered from the command line, where
the most recent command enters the history list at the top. If the newest command is the same as the previous command
it is not added to the command history. Use the mouse to operate the scroll bar of the command history list box to find a
command that needs to be entered again. Double click on the line, the command is pasted into the command line, press
<enter> to send the command to the Scan Controller.

Baud Rate Indicator and Ready signal
The Baud Rate Indicator and Ready signal show the state of communication across the serial port from the computer to
the Scan Controller. The Baud Rate indicator shows the current baud rate setting for the host computer. The baud rate
defaults to 2400 baud when the Command Line Interface program is first started. Expert The default startup baud rate
can be adjusted by operating the CLI.EXE front panel control ‘Startup baud rate’ accessable through the CLI.EXE front
panel vertical scroll bar. Stop the CLI.EXE program by pressing the ‘Done’ button and adjust the baud rate. Then resart
the program by pressing the run arrow located in the upper left corner of the main screen. The Ready signal turns from
Green to Red when the Command Line interface program is busy performing an operation. Do not press buttons or
terminate the program while the Ready signal is busy (Red).

18

Readback xlat
The type of readback
translation for
interpretation of a
response to a query.

Command Byte String
The binary command sent to
the Scan Controller, in ascii
hex format.

Response Window.
Messages from the Scan
Controller are interpreted and
displayed here.

Command Line.
The Scan Controller can be
interactively controlled by
entering commands here.

Figure 15 Command Line

Command Line Interface Controls and Displays
The Scan Controller can be controlled interactively by entering SC2000 assembly language commands at the command
line prompt, shown in expanded view in Figure 15. There are also facilities that reveal the binary commands sent to the
Scan Controller as the result of Command Line input and certain button activated functions; this allows the Command
Line to be used as a source of binary commands that can be copied and included in other types of programs that
communicate with the Scan Controller.

Command Line
The Command Line is a single line text input box that provides a means of interactive control of the Scan Controller
through SC2000 assembly language commands. With the exception of program creation commands, every SC2000
assembly language command can be entered from the Command Line where the command is checked, assembled and
transmitted via the serial port to the Scan Controller. Query commands, commands that start with ‘?’, can be issued and
the Scan Controller response is reported in the Response Window in ASCII hex and decoded form. Each command is
entered by pressing the <enter> key. A history of commands entered from the command line displayed in the Command
History list box located just beneath the command line.

Response Window
The Response Window is where to look for information sent back from the Scan Controller or from the command line
interface program. This information can include the result of query commands, data translations and operational

19

messages. The Response Window is cleared when you enter a new command from the command line or when you
invoke a high level operation from the button pad.

Machine Code Display
A display of assembled binary command data (machine code) is provided as a convenience for developers wishing to
communicate with the Scan Controller in binary format. The Machine Code Display shows the translation of the SC2000
assembly language statement entered from the command line after assembly. The Command Byte string is the binary
data sent to the Scan Controller, the Machine Code. This is displayed in hexadecimal format with the bytes sent to the
Scan Controller in left-to-right order. If the statement entered on the Command Line was a query command, information
is provided on the number of bytes to read back and the type of translation to apply to the readback data.

20

Done button
Terminates the program.

Configure button
Raises the Configure
sub-menu.

Raster Draw button
Raises the Raster
Drawing op sub-menu.

Vector Draw button
Raises the Vector
Drawing op sub-menu.

File ops button
Raises the file operation
sub-menu.

Figure 16 Button Pad

Main Window Button Pad
The majority of the high level functions of the Command Line Interface program are invoked by button presses on the
Button pad (see Figure 16), with the logical structure shown in Table 1.

Done Button
Press the Done button to end the Command Line interface program on the host computer. The Done button does not
affect the operation of the Scan Controller.

Configure Button
Press the Configure button to call up the Configure sub-menu. Options in the Configure sub-menu are:
1. Configure Communications.
2. Host Computer.
3. Configure Pixel clock.
4. Position readback calibration.
5. Adjust and save global parameters.

Raster Draw button
Press the Raster Draw button to call up the Raster Draw operation sub-menu. From here you can invoke one of several
drawing tools that generate programs designed to run in raster mode or dual single axis mode.

Vector Draw button
Press the Vector Draw button to call the Vector Draw operation sub-menu. From here you can invoke one of several
drawing tools that generate Scan Controller programs designed to run in vector mode. Available options are:
1. Draw Circle
2. Draw Free-form line

21

Table 1 Function Button locator tree

Main Window

Configure Raster Draw Vector Draw File ops Done
Sub-menu *Sub-menu* *Sub-menu* *Sub-menu*

Serial Port Load wave Load circle Done

Host HF Sine Load line Cancel

Pixel Clock Cancel Cancel

Readback Cal

Global Params

Cancel

22

Title text box.
Enter the title of the
program here. The title
is one character in length.

AutoRun switch.
(active during
destination:upload
operations) Select autorun
to make the program
execute after upload. Select
normal to simply upload the
program.

Destination switch.
Select the destination of the drawing object, upload will cause an
assembled program to be uploaded directly to the scan controller, file
will cause a scan controller program to be written to a text file.

Cancel button.
Press this button abort
and return to the main
panel.

Done button.
Press this button to
accept your settings.

Program Type switch.
Select the destination of the program in
the scan controller, flash will store the
program in non-volitile memory, SRAM
will store the program in volitile memory.

File write.
Select the file write method.

Figure 17 Program Destination sub-window

Program Destination Sub-window
The Program Destination Sub-window (see Figure 17) is used to direct the assembled version of a program to a
destination. You can unpload a program directly to the Scan Controller or you can save the program to an assembly
language source file. The Program Destination sub-window will appear after each high level drawing operation. In
addition to the destination of the program, you can also specify various program attributes such as the program name and
the type of program, flash or volatile.

Title Text Box
Enter a one character title for the program in the text box. Expert do not enclose the character in single quotes. When
you wish to execute the program by typing ExecutePGM from the command line, you must enter a character program
name by surrounding the character with single quotes. You can also call a program by the ASCII character value as a
decimal, hex or octal number. Valid program names are 0-9, a-Z and A-Z as well as other characters.

AutoRun Switch
When AutoRun is set to the up position, interpreted commands will be appended to the compiled program to commence
program execution after it is saved in the Scan Controller memory.

Append/Overwrite Switch
When set to Append, new Scan Controller programs saved to an existing file will be appended to the end of the file.
When set to Overwrite, new Scan Controller programs saved to an existing file will overwrite the contents of the file.

Destination Switch
Use the destination Switch to select where the program will finally reside. In the up position the program will be
uploaded directly to the Scan Controller via the serial port. In the down position, the program will be saved to a file disk.
Expert  When a program is saved to disk it retains the Scan Controller storage specification (Flash or SRAM as set
with the Program Type Switch).

Program Type Switch
Use the program Type Switch to select the storage location inside the Scan Controller. The switch is operated by placing
the mouse cursor on the switch graphic and left-mouse clicking. In the up position, the switch will cause the program to
be saved to non-volatile Scan Controller memory by appending the prefix CreateFlashPGM to the program. Expert 
Note that flash programs cannot be download to the Scan Controller while a motion program is running. In the down

23

position the switch will cause the program to be saved to volatile memory on the Scan Controller by appending the
CreatePGM prefix to the motion program.

Done Button
When all the options have been configured, press the Done Button to enter the settings and start the program save
operation. Done will return control to the Main window.

Cancel Button
You can press the Cancel button at any time. The program will be lost. Cancel will return control to the Main window.

24

Cancel button.
Press this button
abort and return
to the main panel.

Done button.
Press this button
to accept your settings.

Program text box.
The text of the program is listed
out in this text box. Program edits
from this box propagate to the
scan controller but are not saved
to file.

Figure 18 Upload Configuration sub-window

Upload Configuration Sub-window
The Upload Configuration Sub-window, shown in Figure 18, is raised just before a source-code or ASCII-hex program
is submitted to the assembler and uploaded to the Scan Controller. The window provides a type of stream editor where it
is possible to change commands, add or remove lines or the name of a program without changing the original source file.

Program Text Box
The program text box displays a listing of the program either as Scan Controller assembly language or ASCII-hex
depending upon the type of file read. The scroll-bar on the left allows vertical panning through long programs. Use the
keyboard to make changes to the text, use the mouse to highlight portions of text. Highlighted regions can be copied to
the paste buffer using ctrl-c. Selected text is cut with ctrl-x and text is pasted with ctrl-v.

Done Button
Press the Done button to assemble and upload the program text. If you have not made any changes to the text, the
uploaded program will be exactly the same as the source file. Done will return control to the Main Window.

Cancel Button
Press the Cancel button to quit before uploading to the Scan Controller. Cancel will return control to the Main Window.

25

Number of Stop Bits
Select one or two
stop bits.

Baud Rate Selector
Select the serial port
baud rate with the
radio buttons.

Parity Type Selector
Select the type of parity
for serial communications.

Done Button
Press the done
button to make the
desired changes.

Cancel Button
Press the Cancel
button to quit out
of making changes.

Figure 19 Serial Port Configuration sub-window

Serial Port Configuration sub-window
Use this window (see Figure 19) to configure the baud rate, parity and stop bits settings of the RS-232 connection
between the host computer and the Scan Controller. Changes made from this interface will be reflected in both the Scan
Controller and the host computer.

Baud Rate Selector
Click the mouse on one of the radio buttons to select the baud rate for subsequent Scan Controller – Command Line
communications. Expert The power on default baud rate for the Scan Controller is always 2400 baud.

Parity Type Selector
Click the mouse on one of the radio buttons to select the type of parity for subsequent Scan Controller – Command Line
communications. Expert The power on default parity for the Scan Controller is always None.

Number of Stop Bits
Select either one stop bit or two stop bits by clicking the mouse over the embedded pull-down menu.
Expert The power-on default number of stop bits is always one.

Done Button
Press the done button to effect the serial port configuration changes and return to the Main Window.

Cancel button
Press the Cancel button to return to the Main window without making any changes to the serial port settings.

26

Source Type
Use the radio buttons
to select the format
of the source file.

Done Button
Press Done to start
the selected file
operation.

Operation List
Describes the type of
file operation selected.

Cancel Button
Press Cancel to quit
out of any file
operations

Destination Type
Use the radio buttons
to select the format
of the destination.

Figure 20 File Operation sub-window

File Operations sub-window
This window (see Figure 20) provides an interface between the Scan Controller and files on the host computer and also
operates as a translation utility for file formats and downloads of binary program listings from the Scan Controller.

Operation List
The text written here describes, in plain talk, the type of operation that will be performed.

Source Type Selector
Use the mouse to declare the format of the source file (the file to be read). Expert Scan Controller source not currently
supported.

Destination Type Selector
Use the mouse to declare the format of the destination file (the file to be written). Select ‘Scan Controller’ to download a
program file from the computer to the Scan Controller.

Done Button
Press the Done button to begin the desired operation. If the source and/or destination involve files on the host computer,
you will be prompted for file names from pop-up file dialog boxes.

Cancel Button
Press the Cancel Button to quit out of any file operations and return to the Main Window.

27

Cancel button
Close the Raster Drawing
sub-menu and return to
the Main Window

HF Sine
Calls the modulated sine
wave development window.

Load Wave
Calls the Raster-Master
window for interactive single
axis waveform development.

Figure 21 Raster operation sub-menu

Raster Operations sub-menu
Interactive tools from this sub-menu (see Figure 21) generate raster programs such as periodic sine, triangle, square, and
sawtooth waveforms for single axis control and also modulated high-frequency sine wave programs for pixel clock
control.

Load Wave
This button invokes the period waveform generator utility. Use this utility create a raster scanning waveform as a Scan
Controller program file.

HF Sine
This button calls the modulated sine wave development window which takes a periodic raster scan wave as input and
uses it to modulate a high frequency sine wave. The result is stored as a Scan Controller program file.

Cancel button
Press this button to close the sub-menu and return to the Main Window.

28

Serial Port
Calls the serial port
configuration window.

Pixel Clock
Calls the pixel clock
configuration window.

Cancel
Close the Configure sub-menu
and return to the Main Window.

Host
Calls the host computer
configuration panel.

Readback Calibration
Run the Position Readback
calibration procedure.

Global Params
Set certain global parameters
and optionally save to Flash.

Figure 22 Configuration sub-menu

Configuration sub-menu
The configuration sub-menu (see Figure 22) is used as a jump point to various configuration tools that adjust various
system parameters such as serial port baud rate and pixel clock settings.

Serial Port button
Press the Serial Port button to invoke the RS-232 setup window. From this window you can configure the baud rate (up
to 115.2K baud) , parity and stop bits of both the Scan Controller and the host computer.

Host button
Press the Host button to call the host configuration panel. Current support for one option, configure Command Line
Interface Program to operate on computers with limited RAM with a speed tradeoff.

Pixel Clock button
The on-board Scan Controller pixel clock can be configured through a user interface screen.

Readback Cal button
The CLI will interactively control the Scan Controller and the X and Y SAXes via the serial interface to produce a linear
calibration of the position readback signal. This calibration will be uploaded to the Scan Controller and saved to non-
volatile memory. The procedure requires a working X-Y galvo head with SAXes either manually enabled from the
command line or through the use of the hard wired enable SAX interface cables.

Global Params
This button will invoke a screen that allows editing of certain global configuration parameters for the Scan Controller.
The value of the parameter can be set by entering a number in the provided numeric control. Check the check box to alter

29

the parameter. Parameters are altered once the ‘Done’ button is pressed and only those parameters ‘checked’ will be
changed. The current value of all parameters can be save to non-volitile RAM by checking the ‘Save to Flash’ check
box.

Cancel button
Press the Cancel button to close the configuration sub-menu and return to the Main Widow.

30

Load circle
Call the interactive
circle drawing window

Load line
Call the interactive free-
form line drawing window

cancel
Close the Vector
sub-menu and return
to the Main Window.

Figure 23 Vector Drawing Sub-menu

Vector Drawing sub-menu
The Vector Drawing sub-menu (see Figure 23) allows you to select one of a number of high level vector drawing tools
used to develop Scan Controller programs for X-Y systems.

Load Circle
Press the Load Circle button to call the circle drawing program where you can draw absolutely positioned circles or
relative circles. Circle programs are stored as Scan Controller assembly language files.

Load Line
Press the Load Line button to call the freeform line drawing program. Use the mouse to draw a freeform, two
dimensional line on the canvas. The line is represented as a continuous spline curve with adjustable knot point distance.
A line drawing program is stored as a Scan Controller assembly language file.

Cancel
Press Cancel to return to the Main Window.

31

Done Button
Press Done to continue
processing the drawing.

Radial auto mark
Adjust the knob with the
mouse to vary the smoothness
of the line drawing.

Cursor Cross Hairs
The cross hairs show the
current point in the drawing.

Vector Drawing Canvas
Draw the line here by
grabbing the cross hairs
with the mouse and left-
button-down moving the
mouse along the motion path.

Max normal error
Adjust the knob with the
mouse to vary the granularity
of the vectorization of the curve.

No repeat
TRUE (up) to generate a
program that does not repeat.

restart
Clear the drawing and start a
new one at the current cursor
location.

Segment visibility
Show: The next segment will be rendered.
Hide: The next segment will be hidden.

Figure 24 Free-form line drawing sub-window

Line Drawing sub-window
Use the Line Drawing window (see Figure 24) to create freeform motion paths. A line is drawn by grabbing the cross-
hair cursor with the mouse and then tracing out the motion path desired.

Max normal error
This knob controls the maximum normal error between the approximation vector and an arc of the curve the endpoints of
which lie on the head and tail of the approximation vector. For a given setting of this ‘max normal error’ control, a head
to tail sequence of vectors will be generated along the curve such that the length of a line normal from a given vector to
the curve arc that it approximates will never exceed the control setting. This is the manner of converting curved
trajectories to Scan Controller programs. The vectorization sub-panel is not available for line drawings as it is in circle
drawing but the effect is the same. See the section “Circle vectorization sub-window” and try the circle drawing tool for
a visual example of the vectorizing effect of the ‘max normal error’ control.

Radial Auto-Mark
This knob controls the spacing of knot points along the spline interpolated line. Larger settings of radial auto-mark result
in smoother lines, but also lines which do not always travel the exact path traced by the mouse. Settings of 0.01 to 0.4
have the greatest effect in drawing detail and overall smoothness. Radial auto-mark can be changed during the course of
a line drawing to get a combination of smooth lines and fine detail.

No repeat
The action of this switch when in the up position (TRUE) is to generate a Scan Controller program that does not have a
repeat statement. The effect is such that when the program is run, the path traced is one traverse of the drawn path and
then the end of the program.

32

Restart
Press this button to clear the current drawing and reset the start point to the current cursor location. This allows you to
start the drawing were you want.

Segment visibility
There are two types of lines drawn, ‘shown’ and ‘hidden’. The segment visibility is set before the line is drawn. ‘Shown’
lines are displayed on the computer screen in black and ‘hidden’ lines are shown in red. Please note also that when the
‘segment visibility’ control is changed the spline for that segment is closed. This closure generates a corner at the
endpoint of the previous spline and the start of the next spline. The end and start points are coincident but the first
derivatives from the left and from the right may be different. Traversal of this corner may cause inertial mirror effects
not present during the traversal of the spline interpolated curve. The mechanism of turning the laser on and off is to insert
‘setsync 1’ and ‘unsetsync 1’ commands at the corners. If other sync channels are to be used for laser control, the
program can be saved as a file and edited with a text editor.

Done button
Press the Done button to convert the drawing into a Scan Controller program, after which you will be prompted to save
the line drawing as a file in the Scan Controller assembly language format.

33

Circle center
The original location
of the radius cursor
before moving.

Radius cursor
Grab the cursor with the
mouse and move away
from the center point to
increase the size of the
circle.

Done button
Press Done to continue
processing the circle.

Re-center
Press this button to
re-center a circle on
the current cursor position.

Figure 25 Circle drawing sub-window

Circle Drawing sub-window
Use the Circle Drawing window (see Figure 25) to generate circles of various sizes. A circle is drawn by grabbing the
cross-hair cursor and moving away from the center point; a circle is rendered with its center at the initial cursor point.

Recenter
Press the recenter button to begin a new circle with a center at the current cursor location.

Done
Press the done button to convert the rendered circle into a Scan Controller program. You will be prompted to vectorize
the circle and then save the circle program as a file in the Scan Controller assembly language format.

34

Done
Press the ‘done’ button to accept
the vectorization of the circle.

No repeat
TRUE (up) to generate a
program that does not repeat.

reference
absolute: circle is drawn in absolute coordinates.
Relative: circle is drawn relative to the current
position at run-time.

Max normal error
Adjust the knob with the
mouse to vary the granularity
of the vectorization of the curve

Figure 26: Circle vectorization sub-window

Circle vectorization sub-window
Use the Circle vectorization sub-window to convert the smooth curve circle into a group of vectors that approximate the
path of the circle. This tool allows curve generation in the Scan Controller by providing a tradeoff between program size
and smoothness of the curve.

Max normal error
This knob controls the maximum normal error between the approximation vector and an arc of the curve the endpoints of
which lie on the head and tail of the approximation vector. For a given setting of this ‘max normal error’ control, a head
to tail sequence of vectors will be generated along the curve such that the length of a line normal from a given vector to
the curve arc that it approximates will never exceed the control setting. This is the manner of converting curved
trajectories to Scan Controller programs.

No repeat
The action of this switch when in the up position (TRUE) is to generate a Scan Controller program that does not have a
repeat statement. The effect is such that when the program is run, the path traced is one revolution about the circle.

Reference
Circle programs may be generated using either absolute positioning commands or relative positioning commands.
‘Absolute’ will cause a circle program to be generated which contains slewxy commands. Positioning in the field of view
is directly tied to the origin of the drawing screen. ‘Relative’ will cause a circle program to be generated which contains
deltaslewxy commands. Positioning in the field of view is relative to the current mirror position before the program is
run.

Done
Press the ‘Done’ button to accept the vectorization of the circle.

35

Operating the Scan Controller
Once the CLI program is initialized, the Ready light on the CLI main panel should turn green, indicating that the
Command Line Interface program is in the idle state. Single line SC2000 assembly language commands can be sent to
the Scan Controller by typing in the Command Line box. Press <enter> to assemble the command and send the binary to
the Scan Controller over the serial line. High-level interface tools are started by raising a sub-menu of operations with
one of the buttons located on the right side of the main window. The Command Line Interface assembler will perform
error checking on programs submitted from files and immediate commands entered from the Command Line and error
reports will be generated in the case of out of range arguments, illegal or improper commands, etc.. SC2000 assembly
language commands are documented in the Reference section at the end of this document.

An example of typical operation is as follows::
1. Raster Draw / Load Wave: This brings up the window shown in Figure 27. Signal Source provides the means to

select the basic wave-shape. Frequency and Amplitude (in peak volts, of the commanded wave-form) can be
entered in the appropriate places. Offset will adjust a DC offset term which is added to the wave-form, and the
phase variable sets the location the ‘repeat’ statement. Ticks per sample controls how finely the waveform is
broken up into straight-line segments. The Scan Controller codec operates at a constant update rate of 43.411 kHz (it
outputs command voltages to the galvo at this constant rate). One way of generating wave-forms is to store one
point for each point output to the galvo. For many applications this is unnecessary – the program can be made of
many fewer points, and the Scan Controller will generate straight lines between them using the slewxy or slew
commands. The Ticks per sample control controls this granularity. When it is set to 1 a command is generated for
each point to the galvo – if it is set to 10 then a command is generated for every ten points, and straight lines are
drawn between them. For 'Ticks per Sample' of one, this control re-names itself Periods and allows multiple periods
of a waveform to be generated. This is useful for generating higher frequency waveforms. The waveform plot shows
the effects of varying these controls, in real-time. Finally, the derivitator control allows the display and generation
of the time derivative of the wave-form. This can be useful where velocity, rather than position is the variable of
interest. When the desired wave-form is present in the plot, pressing the Done button brings up the Program
Destination Window, shown in Figure 17. This allows you to direct the program to the Scan Controller or store to a
file on the host. The title is any single character, which will be converted to a number by the program (the program
describing this sine wave is called ‘a’).

2. File Ops source code  Scan Controller: This allows you to take an already created program stored on the host
and load it to the user interface. The sine wave program created above has the listing shown below, and can be
assembled and sent to the Scan Controller using the file ops window, shown in Figure 20.

CreatePGM 0 'a'
Slew 1897 13
Slew 3898 13
Slew 5759 13
Slew 7411 13
Slew 8795 13
Slew 9862 13
Slew 10572 13
Slew 10900 13
Slew 10834 13
Slew 10377 13
Slew 9544 13
Slew 8367 13
Slew 6887 13
Slew 5158 13
Slew 3243 13
Slew 1211 13
Slew -866 13
Slew -2911 13
Slew -4850 13
Slew -6615 13
Slew -8140 13
Slew -9371 13
Slew -10264 13
Slew -10785 13
Slew -10917 13

36

Slew -10654 13
Slew -10006 13
Slew -8996 13
Slew -7662 13
Slew -6050 13
Slew -4220 13
Slew -2237 13
Slew -173 13
repeat
end

Figure 27 Load wave window

37

Tutorial: Writing Scan Controller programs
Author: Fred Stewart
Date: 06-02-99

Introduction.

The GSI Lumonics Scan Controller accepts a motion program language that consists of a binary machine language. Scan
Controller assemblers and assembler components are provided by GSI Lumonics to allow the motion application
developer to use English language commands for controlling single axis, dual single axis and dual axis motions as well
as interactive control of the Scan Controller. The full range of motion control expression native to the binary machine
language is available through the use of the SC2000 assembly language. This document is a tutorial and application note
to help the motion application developer understand and use the SC2000 assembly language in conjunction with a Scan
Controller assembler.

38

Quick Start.

Scan Controller programs are typed into a text file with a text editor such as Wordpad (save with text only option).
Expert  It is not possible to enter a Scan Controller program from the Command Line prompt, you must use a file.
There are two basic operating modes in the Scan Controller. Vector mode is used to simultaneously control X and Y axis
galvos to produce vector drawing. Raster mode is used to control a select single axis. Vector commands can be
distinguished from raster commands by the presence of an ‘xy’ suffix. For example, ‘Slewxy’ is a vector command and
‘Slew’ is a raster command.

The following is a simple vector program that generates a slowly traced 45 degree line:

CreatePGM 1 ’a’
Slewxy 10000 10000 32000
Slewxy –10000 –10000 32000
Repeat
End

CreatePGM 1 ‘a’

Slewxy 10000 10000 32000

Slewxy –10000 –10000 32000

Repeat

End

Program head statement

Program tail statement

Control flow statement

Motion command

Motion command

X axis parameter

Y axis parameter

Time parameter

Vector declaration

Program ID

This program can be executed by uploading the program and then entering the following command at the command line:

vector
ExecutePGM ’a’

39

The following is a simple raster program that generates a slowly traced horizontal or vertical line:

CreatePGM 0 ’b’
Slew 10000 32000
Slew –10000 32000
Repeat
End

CreatePGM 0 ‘b’

Slew 10000 32000

Slew –10000 32000

Repeat

End

Program head statement

Program tail statement

Control flow statement

Motion command

Motion command

position parameter

Time parameter

Raster declaration

Program ID

This program can be executed by uploading the program and then entering the following commands at the command line
for horizontal motion:

Raster 1
ExecutePGM ’b’

or for vertical motion:

Raster 2
ExecutePGM ’b’

40

Scan Controller language overview.

Keywords fall into six groups:
1. Semantic directives
2. Flow control statements
3. Motion statements
4. Side effect statements
5. Immediate directives
6. Assembler directives

Of the six groups, immediate commands cannot appear in programs and semantic statements cannot be nested.

Vector & Raster

CreatePGM
CreateFlashPGM
End

Table 2 Semantic directives

Vector & Raster Vector Raster
Repeat
NRepeat
ExecutePGM
Wait
Waitsync
If <sync> ExecutePGM
If TempOK <device> ExecutePGM
ExitPgm
AbortPgm

ExecuteRasterPGM
If <sync> ExecuteRasterPGM
If TempOK <device> ExecuteRasterPGM
WaitPositionXY

WaitPosition

Table 3 Flow Control statements

Vector Raster

PositionXY
SlewXY
DeltaPositionXY
DeltaSlewXY

Position
Slew
DeltaPosition
DeltaSlew

Table 4 Motion Command statements

(Motion commands are divided into raster and vector commands)

41

Vector & Raster Vector Raster
Setsync
Unsetsync
DelayedSetSync
DelayedUnsetSync
Enable
Disable
ConfigPixelClock
ComConfig

DeltaTweakAxisXY
TweakAxisXY

DeltaTweakAxis
TweakAxis

Table 5 Side effect statements

Directives Queries

Raster
Vector
PackMemory
ReleasePgm
SetConfigVar
SetGSS
SetXPROffset
SetXPRGain
SetYPROffset
SetYPRGain
SetSetSyncDelay
SetUnsetSyncDelay
SaveConfigInFlash

?FreeFlashSpace
?FreeRAMSpace
?ID
?Position
?Temp
?TempOK
?OpticalCal
?Status
?Sync

Table 6 Immediate directives

(Immediate directives are either commands or queries and cannot be included in programs. They
are listed here for completeness.)

Directives
#

Table 7 Assembler Directives

(Assembler directives control the operation of the assembler and do not have any direct translation to
the Scan Controller binary language.)

42

Program Definition.

Semantic statements are directives that cannot be nested in programs. Programs begin with a head statement, either the
‘CreatePGM’ statement or the ‘CreateFlashPGM’ statement. The header statement of a program is required. All
programs have a tail statement, the ‘end’ statement. The tail statement of a program is required. In between the head
and tail statements a program can contain synchronization and flow control statements and raster or vector motion
statements. Note that raster and vector motion commands cannot be mixed in one program. Thusly, a program is
declared to be either as raster or vector by the first parameter of the head statement.

CreatePGM 0 ’r’
statement
.
.
.

statement
end

‘CreatePGM’ and ‘CreateFlashPGM’ take the same parameters. Parameter-1 is the program type: ‘0’ for raster
programs and ‘1’ for vector programs. Parameter-2 is the name or program-ID written in any number format valued
from 1 to 255.

The ‘end’ statement signifies the end of the program identified by program-ID. ‘CreatePGM - end’ pairs cannot
be nested; if the assembler parses a ‘CreatePGM’ directive before an ‘end’ directive after encountering an initial
‘CreatePGM’ directive it will flag an error.

The text that follows the ‘end’ statement can be either directives or statements; the Scan Controller assembler will
assemble commands inside and outside of the‘CreatePGM’ mode context and it is up to the communications
application to manage coordination of directive, query and program operation of the Scan Controller. Therefore,
assembler is capable of assembling single statements from a command line, multiple Scan Controller programs written in
a single file or a mixture of Scan Controller programs and immediate directives. For example, the following file, when
assembled and uploaded, will define a program and then execute it.

render a box shape
CreatePGM 1 ’a’
Slewxy 1000 1000 500
Slewxy –1000 1000 500
Slewxy –1000 –1000 500
Slewxy 1000 –1000 500
Repeat
End

#run the program
ExecutePGM ’a’

43

Program Flow Control

Scan Controller programs run in the standard sequential statement execute style; the statements are executed in order
from the first statement to the second, etc. Program flow control statements modify the basic sequential execution of a
program thereby providing a richer environment for motion control.

Perhaps the simplest program flow control command is the ‘Wait’ statement. It takes one parameter, the number of
23S counts to wait. The ‘Wait’ statement basically generates a pause in the program at the current position, in either
vector or raster mode. When in dual single axis vector mode, a ‘Wait’ in the program of one axis will not affect the
other axis program. Note that the time paused is unconditional, the program will not continue until the wait timer expires.
While the ‘Wait’ command is unconditional, the ‘Waitsync’ command allows a variable length program pause by
stopping the program at the current position until a signal is received on a sync pin. ‘Waitsync’ takes one parameter, the
sync channel number. A read only sync channel (5 - 12) can be wired to an external sensor or button, or a read/write sync
channel (1 - 4) can be shared between two programs running dual single axis mode. ‘Waitsync’ is valid in both vector
and raster modes. ‘WaitPosition’ and ‘WaitPositionXY’ are used to pause program execution until the galvo reaches
the target position. These commands operate in the same manner as Waitsync except that the RMS value of the position
readback buffer is used rather than the value of the sync channel. Tolerance of this command to position error can be
tuned with the WaitPosition parameter and by adjusting the size of the sample buffer (see SetGSS) .

When an executing program encounters the ‘Repeat’ command or the ‘NRepeat’ command, the point of execution
returns to the first statement of the program and execution proceeds from there. In the case of ‘NRepeat’the program
will only repeat as many times as specified by the NRepeat parameter (N times), then it will fall through to subsequent
instructions in the program or, if it is the last statement in the program, execution will return to the calling program or the
idle mode. Expert  A given program may contain only one‘NRepeat’statement.

Repeating programs can be stopped (actually all programs are stopped) by issuing the ‘AbortPGM’ or ‘ExitPGM’
commands from the command line. Programs can also be stopped by creating a ‘stopper program’ that contains just the
‘ExitPGM’ or ‘AbortPGM’ statement. Arrange to have this program run as the result of a conditional test of a sync pin
or a temperature signal. When the condition asserts and the point of execution arrives at the conditional statement, all
running programs will stop and the Scan Controller will return to immediate command mode. In terms of stopping
programs, ‘ExitPGM’ provides a graceful exit from the program by cancelling the action of all ‘repeat’ and ‘if <sync
channel 1,2,3 or 4>’statements. There may be some delay between the time that the ExitPGM command is issued and
when the program stops. Issue the ?status command and wait for a response that identifies Exitpgm success
(0x000000250000). Expert sync inputs (channels 5-12), WaitPositionand WaitPositionXY statements are not affected
by ExitPgm.‘AbortPGM’ terminates the program as soon as possible also disabling the servos. Expert AbortPgm
will disable both SAXes. The choice of these two modes of stopping along with other commands in the ‘stopper
program’ provide a flexible means of stopping programs under various conditions. For example the ‘stopper program’
can also perform other cleanup operations such as disabling lasers or extinguishing machine vision lighting by
controlling these devices from the sync channel pins. Expert  Issuing the ‘ExitPGM’ command on non-repeating
programs has no effect except for ‘if <sync channel 1,2,3 or 4>’ , so given a program that you wish to stop that contains
particularly long slews, the appropriate command for immediate halting is ‘AbortPGM’ .

The ‘ExecutePGM’ statement is used to spawn a new program from inside a parent program and could be classified as
an unconditional branch statement. ‘ExecutePGM’ is sensitive to the current operating mode of the Scan Controller. If
the controller is operating in Vector mode, only vector programs can be started by the ‘ExecutePGM’ program
statement. Similarly in Raster mode, only new raster programs can be executed, with the additional constraint that
execution always occurs on the same axis as that of the parent. Please note also that the Scan Controller has a finite call
depth for ‘ExecutePGM’.

Somewhat more formalized conditional statements in the SC2000 assembly language are ‘If <sync channel>
ExecutePGM’ and the ‘If TempOK <device> ExecutePGM’ statements. These are simple ‘if’ clauses; ‘else’
clauses are not supported. Expert  The entire program statement must be written on one line. The two flavors of ‘if’
statements support program spawning from an external signal (sync channels 5 - 12) or internal flag (sync channels 1 - 4)

44

and program spawning under the control of the axis servo temperature with the TempOK <device> form. Both are
available in vector and raster modes.

Forms of previously discussed flow control statements are available (when in vector mode) to begin yet another
execution mode called the dual single axis mode. Dual single axis mode will execute two raster programs concurrently,
one on the X-axis and one on the Y-axis. The standard program invocation ‘ExecuteRasterPGM’ will commence
the dual single axis mode from vector mode. The command takes two arguments, Arg-1 is the X-axis program and Arg-2
is the Y-axis program. Similarly, the conditional statements that start the dual single axis mode take X-axis and Y-axis
arguments. These commands are ‘If <sync channel> ExecuteRasterPGM’ and ‘If TempOK <device>
ExecuteRasterPGM’.

45

Motion Commands
Motion commands exhibit the most thorough symmetry between vector and raster modes of all the command groups. For
each vector motion command there is a corresponding raster motion command. The coordinate values of all the absolute
motion and positioning commands range from –32768 to +32767 and correspond to voltages on the SAX drive pins,
where –32768  3.1 Volts, 32767  -3.1 Volts and 0  0.0 Volts. Command values outside of this range will be flagged
as errors by the assembler.

In the SC2000 assembly language the fundamental positioning command is the absolute position statement
‘PositionXY’ for vector and ‘Position’ for raster. The vector form takes two parameters, the X-coordinate and the Y-
coordinate while the raster form takes just one parameter, the coordinate. The position commands will cause the servo
control voltage to change very rapidly, in effect “setting” the position of the galvo. This change in position command can
happen faster than the servo driver can keep up, so thought must be given towards total system response to large step
changes.

Large steps can be programmed in a smoother manner with the slew commands. The absolute positioning slew statement
for vector mode is ‘SlewXY’ and for raster mode it is ‘Slew’. The vector slew command takes three parameters, the
X-coordinate, the Y-coordinate and the count. X and Y coordinates have the same range as above in the position
commands. The count parameter has a value for 1 to 32767 and represents the number of 23 S ticks that pass while the
line is drawn to the new coordinate. The path control voltage during a slew is a linear ramp from the current position to
the new absolute position over the course of <count> ticks. In raster mode this is just a simple smooth ramp. In vector
mode, two concurrent ramps are generated, possibly different in slope, start point and end point, the only common factor
being the time it takes to complete each ramp.

Tick counts Time (seconds)
433 0.0100163725
 4323 0.1000017975
21615 0.500017975
43230 1.000017975
65535 1.515988
2155625203 3600.0000084
14294967296 99353.33097
Table 8: Tick count vs. time

The positioning commands described above operate in the absolute coordinate system of –32768 to +32767 for X and Y
axis. Another set of SC2000 commands operate using relative coordinates. In vector mode these statements are
‘DeltaPositionXY’ and ‘DeltaSlewXY’ and in raster mode they are ‘DeltaPosition’ and ‘DeltaSlew’. Again, the
vector deltaposition command takes two parameters, the X-axis parameter and the Y-axis parameter but instead of
indicating the target coordinates absolutely, the parameters indicate an offset relative to the current position (here current
position is the last commanded position value, not the reading of the position detector.) Limits for the offset value are the
same as for the position commands, -32768 to +32767. The count parameter specifies the number of ticks to pass for the
motion to complete.

1,2 32 bit count for ‘wait’ statement

46

Side Effect Statements
Side effect statements are used to control devices or channels in ways that do not involve motion control of the galvo.
Certain commands operate with zero cycle overhead, making it possible after fully specifying a motion program with
slew and position statements, to insert side effect statements for the purpose of control and synchronization without
affecting the validity of the independently developed motion program.

The most fundamental side effect statements are ‘enable’ and ‘disable’, which are used to enable and disable the
SAX servo boards. ‘enable’ and ‘disable’ each take a single parameter, the device specification. 1 is the X-axis,
2 is the Y axis and 3 specifies both axis for simultaneous enable or disable both SAXes at the same time. It is important
to note that SAX modules must be enabled before they can servo command voltages. Enable and disable can be issued
from inside a program making it possible to operate SAX boards according to conditions detected at the temperature or
sync pin inputs as well as at the beginning and end of a program.

‘SetSync’ and ‘UnsetSync’ operate on the first four sync channels. These four are different from the other eight
sync channels in that they can be both written to and read out. Each command takes one argument, the sync channel
specification, valued from 1 to 4. The hardware pins corresponding to the sync channel are located in J4. Channel 1
operates pin 1, channel 2 operates pin 2, etc. The ‘SetSync’ command turns on an open drain MOSFET causing the
J4 pin to sink current through to J4 pin 5. ‘UnsetSync’ turns the open drain MOSFET off leaving the pin in a high
impedance state with respect to pin 5. The read operation for these sync channels references the ‘internal output port
mirror register’, not the logic level present on the pin. ‘SetSync’ and ‘UnsetSync’ can also be used internally by
programs providing a simple flag mechanism that two programs can use for communication when running in dual single
axis mode. In this manner of operation, no external connection is required. Two related commands are
‘DelayedSetSync’ and ‘DelayedUnsetSync’ and their action is exactly the same as ‘SetSync’ and
‘UnsetSync’ except that the transistor action occurs some number of ticks after the command is executed in the
program. The delay is specified in a global configuration variable, typically set to compensate for Codec and servo
delays.

‘DeltaTweakAxisXY’, ‘DeltaTweakAxis’, ‘TweakAxisXY’ and ‘TweakAxis’ are used to adjust the
gain and offset correction factors on the fly. ‘DeltaTweakAxis’ and ‘TweakAxis’ are used in raster mode and
‘DeltaTweakAxisXY’ and ‘TweakAxisXY’ are used in vector mode. The ‘DeltaTweakAxis’ commands
take two kinds of parameters, gain and offset, which are processed as deltas or incrementals of the current correction
values. The gain parameter is a floating-point value ranging between 0.5 and 1.5. This gain delta is multiplied by the
current gain value to produce the new gain value (the power-on default gain value is 1.0, see Equation 1.) The offset
incremental, a positive or negative integer, is added to the current offset value, the result being stored as the offset
correction, effectively relocating the origin by the incremental value (see Equation 2).

Equation 1: Delta Gain equation

1.2
Previous
gain value

x 1.1
Gain

Delta value

=1.32
New

gain value

Equation 2: Delta Offset equation

25
Previous

offset value

+ 2
Offset

Delta value

=27
New

offset value

The ‘TweakAxis’ and ‘TweakAxisXY’ commands take the same kinds of parameters as those above but instead
of being deltas they are the actual gain or offset value and the action of the command is just to set the gain and offset to
the given values. These commands can be either program statements or immediate directives and care should be taken to

47

understand the operational context in which these commands are executed. Typically, ‘TweakAxis’ and
‘DeltaTweakAxis’ can only be instructions in a raster program or can only be entered when a raster program is
running. Similarly, ‘TweakAxisXY’ and ‘DeltaTweakAxisXY’ can only run in the vector context. Of special
interest is the Dual Single Axis mode initiated by the ‘ExecuteRasterPGM’ command. From the outside, this mode
is the same as vector mode, and you should enter ‘TweakAxisXY’ or ‘DeltaTweakAxisXY’ as a concurrent
immediate directive. From the inside (in the context of the running programs) the Scan Controller is in raster mode and
the statements ‘TweakAxis’ or ‘DeltaTweakAxis’ should be used in programs.

The ‘?Position’ command will readback the current position of the galvo as reported by the galvo’s position sensor.
This reading has a two point calibration associated with it making it possible to calibrate the readback value of the galvo
to the commanded position. Calibration values are entered with the commands ‘SetXPROffset’, ‘SetXPRGain’,
‘SetYPROffset’, and ‘SetYPRGain’ and the values relate the readback value to the raw position sensor reading
with the following formula: axisaxisaxisaxis PROffsetPRawPRGainPRead  . Calibration values as entered with
these commands are in volatile memory. Calibration values can be stored in non-volatile memory by using the command
‘SaveConfigInFlash’ and when the Scan Controller is power-cycled, the saved configuration values will be
automatically loaded. Subsequent execution of the commands ‘SetXPROffset’, ‘SetXPRGain’,
‘SetYPROffset’ and ‘SetYPRGain’ will adjust the current calibration values, but unless the
‘SaveConfigInFlash’ command is executed, the updated calibration values will be lost when the Scan Controller
is power cycled, and the values restored upon power-cycle will be the values stored in flash.

The command ‘SetGSS’ adjusts size of the ‘WaitPosition’ sample buffer for both the X and Y axis. This size
can be any value from 1 to 100. It is saved to flash at the same time as the above parameters by using the
‘SaveConfigInFlash’ command and modification of the run-time value is the same as above. The Global Sample
Size determines the number of position values used in the RMS computation of error from target. In the time domain the
Global Sample Size determines the size of a sliding window that holds a finite position readback history.

Two additional configuration variables stored into Flash memory by the ‘SaveConfigInFlash’ command are the
tick delay values stored by the ‘SetSetSyncDelay’ and ‘SetUnsetSyncDelay’ commands. These delay
values are used by the commands ‘DelayedSetSync’ and ‘DelayedUnsetSync’. There are separate global
delays for the Set and Unset versions; each ‘DelayedSetSync’ command in a program has the same delay, but this
can be different from the ‘DelayedUnsetSync’ delay. Expert  If the delay time is longer than the total tick count
of a short, repeating program, a stack overflow error will result. Expert  The delayed signal will continue to operate
after a program has completed.

48

Immediate Directives
Immediate directives are commands and queries that cannot be executed from within a program and will not be covered
as a group in this section. Certain commands are of special interest, however. ‘Raster’ and ‘Vector’ are the
statments used to set the operating mode. ‘Vector’ is used to set the operating mode for vector programs and dual
single axis programs. ‘Raster’ takes one parameter, the axis specifier, and causes all programs declared as raster and
all raster commands to be executed on the specified axis. Note that the operating mode of the Scan Controller is checked
by the firmware before executing a command or program. If the operating mode, raster or vector, does not match the
command type, an error will be raised and all further commands will be ignored. This error must be cleared by the
?status command. Finally, ‘ReleasePGM’ is used to remove a program from memory and takes one parameter, the
program name. The Scan Controller needs to be power cycled before memory can be reclaimed from the non-volatile
memory. Programs that have been released but that reside in SRAM memory can be removed and space reclaimed by
using the ‘PackMemory’ statement.

49

Assembler Directives
The only assembler directive is the comment character ‘#’. Lines can begin with a comment or a comment can appear
on the right side of a program statement. For example, both lines below contain comments.
this is a comment line
slewxy 3000 3000 5000 # move across the diagonal
Comments are stripped out of the source code before assembly.

50

Glossary

Absolute Position: A location definition offset from the origin (0,0).

Character Number: ASCII characters are byte-sized numbers in the range of 30 – 127. They are
written as a single printable character inside single quotes. For example, a
program named ‘5’ is equivalent to a program-ID of 53.

Comment: The comment character, ‘#’ causes everything from the ‘#’ to the end of the
line to be ignored by the assembler. Comments can appear on their own line
or on the same line as a program statement.

Command: The Scan Controller accepts a binary command language. Commands have
variable length and typically consist of a 1 byte command prefix and zero or
more 2 byte parameter values. The Scan Controller binary command
interface is fully documented in the section ‘Command Reference’.

Decimal Number: Decimal numbers are written as normal numbers and can be positive or
negative. For example, 30000, -250 and +4500 are all decimal numbers.
Note that decimal numbers cannot contain commas or decimal points and if
there is a sign, there can be no space between the sign and the number.

Device: The axis of voltage control are called devices. Numbers are used to identify
the axis where 1 is the X-axis, 2 is the Y-axis and 3 is both axis as a group.

Directive: A statement that changes the operational mode of the Scan Controller.

Floating point number: Floating point numbers are written in decimal notation. They can have an
optional leading sign. If the number is less than +/- 1, the number must have
a leading zero. For example, the value ‘.5’ must be written ‘0.5’. Windows
users who have enabled European local may use the ‘,’ character as the ones
separator.

Hexadecimal number: A number written in the ‘c’ syntax 0xFFFF. In the example 0x1234, ‘4’ is
the least significant digit (ones), ‘3’ is next least significant (16s), ‘1’ is the
most significant (65536s). Hexadecimal numbers are typically used for
program names and for representation of raw binary data.

Number Format: Numbers are written as character, decimal, floating point, hexadecimal or
octal.

Octal Number: Octal numbers are written using the ‘\0’ prefix. For example, \0177 is
equivalent to 127.

Parameter: An argument for a function. Parameters appear after the keyword and are
separated by spaces.

Raster: A mode of Scan Controller operation where a motion command operates on
a single axis.

Relative Position: A location definition offset from the current location.

Statement: Part of a program written in the SC2000 assembly language, a statement
consists of a keyword and any required parameters. There can be zero or
one statements per line in a program file.

51

Tick Count: The heartbeat of the Scan Controller motion command system. There are
23.1325 S between each tick count or about 43,475 ticks per second.

Vector: A mode of Scan Controller operation where a motion command operates on
both axis.

52

Special System Topics

Contact Information
The SC2000 Scan Controller, a product of GSI Lumonics Component Group

 Address………………500 Arsenal St, Watertown, MA 02472-2806

 Phone……………….(617) 924-1010 Ext.182 (Applications HotLine)

 World Wide Web…...http://www.gsilumonics.com

Flash upgrade procedure for Scan Controller firmware.

The GSI Scan Controller firmware is field upgradable. Distributions of new firmware are
made with a file in one of two formats:
1. hex file format, denoted as a filename with a .hex extension.
2. binary file format, denoted as a filename with a .bin extension.

 The firmware field upgrade procedure is as follows:

1. Connect the Scan Controller to a computer which is running the CLI.EXE General Scanning command line
interface program.

2. Transfer the firmware upgrade file to the local hard drive.
3. Power up the Scan Controller and verify communications, optionally set baud rate to maximum.
4. Insure that no programs are running on the Scan Controller (especially the default power-on program).
5. Invoke Scan Controller file transfer by pressing the 'file ops' button.
6. Set file transfer destination to 'Scan Controller', set file transfer source to either 'ASCII Hex' or 'binary program'

depending upon the file extension of your firmware upgrade file.
7. Press 'Done', a file dialog appears. Navigate to the upgrade file, select it and press OK.
8. For ASCII Hex, press ‘DONE’ at the stream editor (please make no changes)
9. The upgrade process now proceeds, transfer progress is reported in the Response Window.
10. The upgrade is complete when the 'Ready' signal turns from Red to Green.
11. Power cycle the Scan Controller, if the baud rate was set to a value other than 2400 baud, please reset to 2400 baud,

and establish communications. Verify that firmware was correctly upgraded by issuing the ?id command. The ?id
should report back the expected firmware version if the upgrade was a success. If the firmware version is 0.0 then
the boot code is responding and the download will have to be attempted again, now only at 2400 Baud.

Command Timing / System Latency Issues
The Scan Controller is intended to provide low jitter delivery of an output waveform, with predictable timing. Delays of
the same order as the fixed delay through the galvo are encountered in the Scan Controller, and must be taken into
account during system design.

The most significant delays occur between the time when an instruction is evaluated, and when an actual voltage value
emerges from the output of the DAC. This delay is due to a number of factors, dominated by the anti-imaging filters in
the DAC. Compared with this, other delays, for instance between when an instruction is evaluated and when a Sync pin
changes state, are negligible. Figure 28 shows this delay as 315µs, in response to PGM ‘a’, whose listing follows the
figure. Note that the setsync 13 instruction and the PositionXY -320 -320 instruction are evaluated
simultaneously by the DSP – the sync command shows up at the output pin virtually instantaneously, but the position
command takes 315µs before it appears at the command input to the SAX. Note that there will be further delays, of this
same order of magnitude, between when the command is seen by the SAX and when the mirror has actually moved into
position – each system will need to be evaluated and the appropriate delays taken into account. Figure 29 shows the

53

system behavior in response to PGM ‘c’, whose listing also follows the figure. By inserting a 'Wait 12’ command
delaying the ‘Setsync’ relative to the ‘PositionXY’ command the two are synchronized.

Another significant delay exists in the AtoD chain, which allows the Scan Controller to read the position detector of the
galvo. This delay is somewhat longer than the DAC delay – about 400µs – and has to be taken into account especially in
deriving system calibration numbers, discussed below in the section Calibration Registers.

Figure 28 Example of D to A vs Sync delay

CreatePGM 1 'a'
setsync 13
PositionXY -320 -320
Wait 2000
UnSetSync 13
PositionXY 320 320
Wait 2000
repeat
end

54

Figure 29 Example of compensated D to A vs Sync delay

CreatePGM 1 'c'
PositionXY -320 -320
Wait 12
setsync 13
Wait 2000
PositionXY 320 320
Wait 12
UnSetSync 13
Wait 2000
repeat
end

The SC2000 command set includes commands tailored to handle the latency inherent in the Codec and in the servo and
positioning galvos. These commands fall under the category of side effect commands are named DelayedSetSync and
DelayedUnsetSync. The action of these commands in similar to SetSync and UnsetSync in that they control the state of
the sync output channels 1-4, 13 and 14; except that the electrical output action of the command is postponed some
number of tick counts from time of execution in the motion control program. The commands provide the abstraction of
writing a program based soley upon the ideal control voltage timeline; sync signals for laser control can be inserted
where appropriate based upon program specified mirror position while adjustable delays take care of the real-world
latencies of the positioning system at run-time.

Pixel Clock
The pixel clock system in the Scan Controller allows users to easily generate a wide variety of periodic timing signals
synchronized with the galvo scan signal. The pixel clock can operate in one of two modes – ‘time based’ and ‘position
based’. Time-based operation is much simpler, and will be explained first. Both of these modes use a National
Semiconductor programmable clock generator – the CGS410 – to generate the clock signal. The resulting signal is then
gated in the Scan Controller with the ‘Setsync 14’ and ‘Unsetsync 14’ commands, and output to J4 pin 14 for
external use. Note that all of the Sync vs DAC delay issues discussed in the Command Timing / System Latency Issues
section apply here.

55

The time-based pixel clock simply uses the Scan Controller’s 33.33MHz main system clock as the reference input to the
CGS410. The CGS410 is then programmed to output the appropriate output frequency. Programming of the device is
done through the Scan Controller command ‘ConfigPixelClock ‘. This is discussed below. A block diagram of the
CGS410 is shown in Figure 30. In this way, any output frequency which is a rational multiple of the clock frequency can

be realized. Note that the system ‘tick’ frequency is equal to 768
34.33 MHz - these numbers become important when

trying to configure pixel clocks whose frequency is an exact multiple of the scan frequency (a necessary constraint if the
pixels are to remain fixed with respect to the scan waveform).

LPR
N

MHzF out **
34.33

Equation 3

The local oscillator of the CGS410 should be run in the region between 65 and 135MHz. Its frequency is given by
Equation 4:

R
N

MHzF Lo
34.33

Equation 4

 32384
6100

 eF tick

Equation 5: Formula for 23 uS tick count frequency

   LPR
NM

2384

Equation 6:Let pixel clock be a multiple M of the tick count

 
 LPR

NM 
 2384

Equation 7: Rational relationship of pixel clock to tick frequency

56

Figure 30 CGS410 block diagram

Invoking the command ‘ConfigPixelClock ‘ at the command line interface brings up the window shown in Figure
31. For a detailed explanation of all these functions please review the CGS410 documentation, available from National
Semiconductor’s website. This screen shows the proper switch settings for a typical time-based pixel clock application
(resulting in a 260.47 kHz pixel clock frequency). The settings are sent to the Scan Controller, and the clock is
programmed when the Done button is
pressed.

Figure 31 ConfigPixelClock configuration screen

57

The ‘position based’ pixel clock is considerably more versatile, and more complicated. Instead of using the fixed system
clock as the time reference to the CGS410, this allows the user to synthesize a clock by comparing the command voltage
from the ‘Y’ axis to the voltage coming into the ‘X’ axis position feedback port. These features are generally available
only to single axis systems – the second axis is use to encode information for the pixel clock operation. This allows the
pixel clock to perform a number of additional functions:
1. It allows the pixels to maintain a constant position in spite of small errors in scanner response
2. It can also, by encoding the proper information in the Y channel program, allow pixel clock operation with

sinusoidal velocity profiles (useful for resonant scanner operation).

ConfigPixelClock commands can be used in programs to change the pixel clock parameters on the fly or to initialize the
pixel clock from the default power-on program. Parameters for the ConfigPixelClock command consist of 6 numbers,
typically in hexadecimal format. It is possible to use the GSI Lumonics Command Line Interface to generate the six
parameters as hexadecimal numbers by invoking the Pixel Clock command window from the config menu. After the
appropriate settings are mad, press ‘done’. At this point, a binary command is sent to the Scan Controller that configures
the pixel clock to the required settings, and these settings can be immediately verified. Once the command binary has
been sent, a hexadecimal version of the command will appear in the ‘Command Byte String’ window (see Figure 15).
This hex string and be copied and pasted into the program file, after which it is modified by removing the first two hex
characters and then preceding the remaining hex character pairs with ‘0x’, in order to write the parameters as 6
hexadecimal bytes in a form acceptable to the assembler.

More details on the operation of the position based pixel clock will show up in this space soon…

58

Calibration Registers
As described in the Command Reference section for the command ‘?OpticalCal’ rising edges input to the Sync 9 – 12
inputs (J4 pins 10-13) will cause the instantaneous values of a number of system variables to be latched to the calibration
registers. These can then be downloaded to the host upon issuing the ‘?OpticalCal’ command, and processed to yield
new values of system calibration parameters. The stored system variables are as follows:

X-Axis
Output
Pos

Y-Axis
Output
Pos

X-Axis
Read Pos

Y-Axis
Read
Pos

X-Axis
System
Gain

X-Axis
System
Offset

Y-Axis
System
Gain

Y-Axis
System
Offset

The system latency issues discussed in the Command Timing / System Latency Issues section apply here as well. Figure
32 shows the issues associated with this latency (for one axis). Assuming the system is commanded to a constant angular
velocity by the Command Stream, the DAC output will follow with its characteristic delay (315µs), the galvo/servo
system will exhibit an additional delay (of the same order, a function of load and tuning). Finally, the AtoD follows with
its delay (roughly 400µs). At time to, a cal pulse is received resulting in the instantaneous system state (command and

position, represented by •in Figure 32, and the instantaneous values of the system gain and offset parameters) being

captured. This data, together with a knowledge of the commanded velocity and delay times will enable the user to
establish the precise position of the calibration sensor in the field of view, and derive appropriate correction factors.

Command Stream

DAC output

galvo position feedback

Scan Controller
position buffer

DAC
delay

Galvo
delay

AtoD
delay

Time

to

Figure 32 Timing of sync pulse

59

D to A and A to D Issues
The latency of the Codec and the total response of the galvo positioning system and tune come into play when using the
waitposition and waitpositionxy commands. Waitposition will typically take one parameter, deviation,
the allowable RMS deviation of the the position signal over an interval. The exact formula used to computer deviation is

 nnetTdev
n

RMS PosPos 
1

2

arg

where devRMS is a parameter of waitposition and waitpositionxy and ‘n’ is the global sample size.

315 S 250*S 400 S

So
ftw

ar
e

co
m

m
an

d
Co

de
c o

ut
pu

t

G
al

vo
 re

sp
on

se

Po
sit

io
n

re
ad

ba
ck

Deviation parameter of the
waitposition command

*dependent on servo characteristics

time

C
om

m
an

d
an

d
po

si
tio

n

Figure 33

As shown in Figure 33 the deviation defines an interval about the final position of the galvo.

60

315 S 250*S 400 S

So
ftw

ar
e

co
m

m
an

d
Co

de
c o

ut
pu

t

G
al

vo
 re

sp
on

se

Po
sit

io
n

re
ad

ba
ck

Global sample size as used
by waitposition command

*dependent on servo characteristics

C
om

m
an

d
an

d
po

si
tio

n

time

Figure 34

As shown in Figure 34 the Global Sample Size defines the number of ticks over which the RMS value of the deviate is
computed.

RasterMaster explained
Raster Draw / Load Wave is explained in the section 'Operating the Scan Controller' on page 35. When the signal
source is set to rastermaster a set of utilities is invoked which is useful in designing structured ramp waveforms, often
used in scanning applications. A ramp waveform is used as the basis for this, and passed through a set of filters before
being displayed. These filters are controlled from the filter window which pops up, as shown in Figure 35. There are five
Bessel filters in series, with types low-pass, high-pass, band-pass and band-reject. Note that these are recursive digital
filters, and can be unstable with some combinations of input parameters. Also note that the cutoff frequencies are
constrained to be below the Nyquist limit, which is set not just by the 43.4 kHz tick rate, but by the real sample rate (i.e.
if ticks per sample is 2, the effective sample rate is 21.7 kHz). Figure 37 shows the function generator window with a
typical raster waveform, and Figure 38 shows the corresponding velocity waveform.

61

Save.
Save filter
settings.

Load.
Load fiter
settings from
file.

Show Frequency Response.
Press to pop-up the frequency
response panel.

Show RasterMaster.
Press to pop-up the
RasterMaster panel.

Filter controls.
Controls for Bessel
filter chain.

Figure 35 Raster filter window

62

Filter.
Select Bessel Filter type.

Low Cutoff.
Low pass type cutoff frequency.

High Cutoff.
High pass type cutoff frequency.

order.
The order of the filter.

Feed gain.
Gain of input signal feedthrough.

Stage gain.
Gain of filter and feed signal
of this stage.

Out/in.
Switch the stage out of
the series filter chain.

Figure 36 Closeup of filter stage controls

As shown in Figure 36, a filter block control section consists of seven controls. Out/in simply switches the filter block
in or out of the series path. Filter provides a way to select the type of filter: one of low-pass, high-pass, band-pass or
band-reject. Low cutoff is used to adjust the cutoff frequency of the low-pass filter and the low cutoff frequency of the
band-pass and band-reject filters. High cutoff is used to adjust the cutoff frequency of the high-pass filter and the high
cutoff frequency of the band-pass and band-reject filters. Order sets the order of the filter, typically 1 through 50. Feed
gain is used to add unfiltered input signal to the output of the stage. Stage gain is used to adjust the overall output level
of the stage.

63

Figure 37 Typical rastermaster wave-form

Figure 38 rastermaster displaying velocity waveform

64

Show RasterMaster.
Press to pop up the
RasterMaster window.

Show Coeff.
Press tp pop-up filter
coefficint window.

Invert.
UP: Invert the bode plot
when loaded from file.

Load File.
Load a bode file
as trace 1 (black).

Graph Controls.
Controls for zoom and
offset..

Phase Response.
Composite phase
response of the filter chain.

Frequency Response.
Composite frequency
response of the filter chain.

Figure 39 Filter Response Window

65

Command Reference
 Copyright 1998, 1999 GSI Lumonics, Inc.

Scope
This command reference refers to:

SC2000 firmware Version 1.2
CLI.EXE Version 1.2
GSI Lumonics SC2000 LabVIEW Driver Library Version 1.2
Active X Motion Assembler Component Version 0.07.0011

Statements
Statements are composed of one command and a variable number of parameters. There are no optional
parameters for Scan Controller commands. Conditional statements actually have two commands per
statement and they are an exception.

Parameter Format
Parameters are either integers or floating point numbers. Parameters are typically transmitted to the Scan
Controller as 16 bit value although there are some exceptions. All parameters are literal values in a
statement and they are separated from each other and from the command text by whitespace.

Floating point numbers are always written in the standard fixed point format with the decimal point located
after the ones position, one or more leading digits and one or more trailing digits. For example, ‘1.3’
‘0.6’ and ‘4.55’ and ‘6,7’ are all acceptable floating point numbers. Examples of unacceptable
floating point number format are ‘4.9e1’ ‘.5’ ‘5.’. Certain computer systems may be configured
for European local, in which case the acceptable decimal point is the comma character.

Integers can be written as decimal, character, octal or hexadecimal numbers. Decimal numbers may have a
leading ‘+’ or ‘-‘ sign and 1 or more digits. For example, -45 +23 200 56000 are all acceptable decimal
integers. Examples of unacceptable decimal integers include 56,000 and 56.000. Character integers are
written as a single printable ASCII character surrounded by single quotes. Examples of acceptable
character integers are ‘4’ ‘A’ and ‘!’. Examples of unacceptable character integers are ‘’’ and ‘\045’. Octal
numbers are written with a leading ‘\0’ followed by the number in base 8. Examples of acceptable octal
numbers are \050 \0233 \0456. Hexadecimal numbers are written using the c language style. They have a
leading ‘0x’ followed by the hex digits. Examples of acceptable hex integers are 0x50 0xFFFF.

DIGIT => [0-9]
OCTAL_DIGIT => [0-7]
HEX_DIGIT => [0-9a-fA_F]

DECIMAL_INTEGER => [+-]*[0-9]+
OCTAL_INTEGER => [\][0][0-7]+
HEX_INTEGER => [0][xX][0-9afAF]+
CHAR_INTEGER => [‘][0-9a-zA-Z][’]

FLOAT => [0-9]+[\.\,][0-9]+

66

Explanation of Operational Modes
Overview: There are various modes of operation that overlap or are mutually

exclusive depending upon those compared.

Raster Mode: A fundamental operating mode for either programs or immediate
instructions in which all motion commands are directed to a specified
axis.

Vector Mode: A fundamental operating mode for either programs or immediate
instructions where motion commands are simultaniously directed to
both the X and Y axises.

Program Instruction Mode: When a program is running the operational context of the instructions
of the program will be Program Instruction Mode. In contrast, query
commands and the system configuration commands cannot be executed
from a program, i.e. they are not valid in Program Instruction Mode.

Immediate Instruction mode: This is the idle mode of the Scan Controller, when a program is not
running. Typically, every command can be executed from this mode
except those that deal exclusively with the operation of programs, i.e.
Repeat, Nrepeat, and End.

Dual Single Axis: This mode is only available when the ExecuteRasterPgm command is
executed. This mode is characterized by two raster programs running
concurrently, one on each axis.

Concurrent Instruction mode: This mode comes about when a program is running and you try to enter
a command over the communications interface. Typically, commands
valid for this mode are the query commands.

67

Assembly Binary
?FreeFlashSpace
?FreeRAMSpace
?ID
?OpticalCal
?Position
?Status
?Sync
?Temp
?TempOK
AbortPgm
ComConfig
ConfigPixelClock
CreateFlashPgm
CreatePgm
DelayedSetSync
DelayedUnSetSync
DeltaPosition
DeltaPositionXY
DeltaSlew
DeltaSlewXY
DeltaTweakAxis
DeltaTweakAxisXY
Disable
Enable
End
ExecutePgm
ExecuteRasterPgm
ExitPgm
Ifexecutepgm
Ifexecuterasterpgm
Iftempokexecutepgm
Iftempokexecuterasterpgm
Nrepeat
PackMemory
Position
PositionXY
Raster
ReleasePgm
Repeat
SaveConfigInFlash
SetConfigVar
SetGSS
SetSetSyncDelay
SetSync
SetUnsetSyncDelay
SetXPRGain
SetXPROffset
SetYPRGain
SetYPROffset
Slew
SlewXY
TweakAxis
TweakAxisXY
UnSetSync
Vector
Wait
WaitPosition

?FreeFlashSpace
?FreeRAMSpace
?ID
?OpticalCal
?Position
?Status
?Sync
?Temp
?TempOK
AbortPgm
ComConfig
ConfigPixelClock
CreateFlashPgm
CreatePgm
DelayedSetSync
DelayedUnSetSync
DeltaPosition
DeltaPositionXY
DeltaSlew
DeltaSlewXY
DeltaTweakAxis
DeltaTweakAxisXY
Disable
Enable
End
ExecutePgm
ExecuteRasterPgm
ExitPgm
Ifexecutepgm
Ifexecuterasterpgm
Iftempokexecutepgm
Iftempokexecuterasterpgm
Nrepeat
PackMemory
Position
PositionXY
Raster
ReleasePgm
Repeat
SaveConfigInFlash
SetConfigVar
SetGSS
SetSetSyncDelay
SetSync
SetUnsetSyncDelay
SetXPRGain
SetXPROffset
SetYPRGain
SetYPROffset
Slew
SlewXY
TweakAxis
TweakAxisXY
UnSetSync
Vector
Wait
WaitPosition

68

WaitPositionXY
WaitSync

WaitPositionXY
WaitSync

70

?FreeFlashSpace

Command Description: Returns byte count of available flash memory.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES NO YES YES

Parameters

(none)

Syntax: ?FreeFlashSpace

Note: The ?FreeFlashSpace command returns the amount of space
available (in bytes) in the non-volatile (flash) area of Scan
Controller memory.

71

?FreeFlashSpace

Binary Interface:

Command Byte: 0x26

Parameters: None

Tick count: <timing dependent upon Baud rate>

Return Count: 4 bytes as (1) big endian doubleword

Notes:

Example: ‘?FreeFlashSpace’ -> “26”
(Readback) “00060000” -> ‘393216’

393216 byte free

Given 0x 00 01 FF FE
 1 | 2 | 3 | 4
get the bytes in the order 1 2 3 4

72

?FreeRAMSpace

Command Description: Returns byte count of available SRAM.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES NO YES YES

Parameters

(none)

Syntax: ?FreeRAMSpace

Note: ?FreeRAMSpace returns the amount of available space, in
bytes, for loading programs into SRAM (volatile) area of the
Scan Controller memory.

73

?FreeRAMSpace

Binary Interface:

Command Byte: 0x27

Parameters: None

Tick count: <timing dependent upon Baud rate>

Return Count: 4 bytes as (1) big endian doubleword

Notes:

Example: ‘?FreeRAMSpace’ -> “27”
(readback) “0001F000” -> ’126976’
126976 bytes free

Given 0x 00 01 FF FE
 1 | 2 | 3 | 4
get the bytes in the order 1 2 3 4

74

?ID

Command Description: Return system revision information.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES NO YES YES

Parameters

(none)

Syntax: ?Id

Note: ?Id returns the Boot Loader Firmware Version number, the
Main Firmware Version number, the Hardware number and
the Device ID number. If the firmware version number is 0.0
then the Boot Loader has responded to the ?Id command
instead of the main firmware. The Hardware number is
typically 2 and the Device ID number is typically 3.

75

?ID

Binary Interface:

Command Byte: 0x29

Parameters: None

Tick count: <timing dependent upon Baud rate>

Return Count: 6 bytes as 6 bytes

Boot Segment Revision <byte 1> . <byte 2>
Firmware Revision (default 1.0) <byte 3> . <byte 4>
Hardware (default 0) <byte 5>
Device ID (default 0) <byte 6>

Notes:

Example: ‘?Id’ -> “29”
(readback) “010001F10200” -> 1,0,1,241,2,0

Boot Segment Revision 1.0
Firmware Revision: 1.241
Hardware: 2
Device ID: 0

76

?OpticalCal

Command Description: Return the contents of the path compensation registers.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES NO YES YES

Parameters

(none)

Syntax: ?OpticalCal

Note: Returns the most recently latched readings from the path
compensation registers.

77

?OpticalCal

Binary Interface:

Command Byte: 0x2D

Parameters: None

Tick count: <timing dependent upon Baud rate>

Return Count: 64 bytes as (32) big endian words

Channel X-Axis
Output
Pos

Y-Axis
Output
Pos

X-Axis
Read Pos

Y-Axis
Read Pos

X-Axis
System
Gain

X-Axis
System
Offset

Y-Axis
System
Gain

Y-Axis
System
Offset

9 Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7 Word 8
10 Word 9 Word 10 Word 11 Word 12 Word 13 Word 14 Word 15 Word 16
11 Word 17 Word 18 Word 19 Word 20 Word 21 Word 22 Word 23 Word 24
12 Word 25 Word 26 Word 27 Word 28 Word 29 Word 30 Word 31 Word 32

where Output Position is the most recent value of the position
command register at the time of trigger, Read Position is the
corrected position readback value at the time of trigger,
System Gain is the overall position command gain coefficient
at the time of trigger, and System Offset is the overall position
command offset constant at the time of trigger. The values are
latched into the Scan Controller optical calibration registers by
a positive edge trigger on any of sync channels 9 – 12.
Optical calibration values can be read by issuing the
?OpticalCal command. Capture and readback can occur in the
idle mode or while a program is running, thereby providing a
mechanism to know the position, accuracy and correction
factor at any given time.

Notes:
The gain value read back is the integer representation of gain.
Use the following formula to convert the integer to floating
point gain: 32768igainfgain  .

Notes:
The position readback value is derived from the following
formula:

axisaxisaxisaxis PROffsetPRawPRGainPRead 
Where PRead is the position sensor reading reported by
?OpticalCal and ?Position, PRaw is the uncorrected position
sensor reading and axis specifies either the X or Y axis. See
SetXPROffset, SetXPRGain, SetYPROffset,
SetYPRGain or SetConfigVar.

Example: ‘?OpticalCal’ -> “2D”

78

?Position

Command Description: Return the current position on the given axis.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES NO YES YES

Parameters

axis axis specifies which axis’ position will be returned.

axis Meaning
1 X-axis position
2 Y-axis position

Syntax: ?Position axis

Note: The ?position command is used to read back the current
position of the given axis. The value returned is the corrected
value of the measured signal of the Galvo position detector.

79

?Position

Binary Interface:

Command Byte: 0x2A

Parameters: 2 bytes as (1) big endian word

Tick count: <timing dependent upon Baud rate>

Return Count: 2 bytes as 1 big endian word

Notes:
The position readback value is derived from the following
formula:

axisaxisaxisaxis PROffsetPRawPRGainPRead 
Where PRead is the position sensor reading reported by
?OpticalCal and ?Position, PRaw is the uncorrected position
sensor reading and axis specifies either the X or Y axis. See
SetXPROffset, SetXPRGain, SetYPROffset,
SetYPRGain or SetConfigVar.

Example: ‘?Position 1’ -> “2A0001”
(Readback) “1388” -> ‘5000’

X-axis position detector reads 5000.

80

?Status

Command Description: Returns error information and clears error state.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES NO YES YES

Parameters

(none)

Syntax: ?Status

Note: The ?Status command returns the error information described
in the Error Processing section of this document. When an
error is discovered while a stored program is executing or
while commands are being received over the communication
link, all subsequent commands are ignored until a ?Status
command is issued or the controller is power cycled. If the
error occurs while a program is running, the program will
continue to run until the ?status command is issued. If the
SC2000 is in the error state (LED ON) ?status will return the
error code of the command in error, halt any running
programs, set the LED to OFF and unlock command
processing. If there is no error, ?status returns the success
code of the last command executed.

81

?Status

Binary Interface:

Command Byte: 0xFF

Parameters: 8 bytes as the fixed value 0xFFFFFFFFFFFFFFFF

Tick count: <timing dependent upon Baud rate>

Return Count: 6 bytes as (3) big endian words

First word, Error Source
value Meaning

0 Error in interpreted
command

1-255 Error in program
command, PGM-ID

9999 System Error

Second word, Command in error
Same as Command Byte definition.

Third word, Error code
See Appendix for Error code definitions.

Note:
See Appendix for error codes.

Example: ‘?Status’ -> “FFFFFFFFFFFFFFFFFF”
(readback) “000000FF0000” –> 0, 255, 0

0 -> report from interpreted mode
255 -> ‘?status’ reporting (last command executed)
0 -> ?status returned success

82

?Sync

Command Description: Returns the logic state of the sync and SAX pins as bits in a
word.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES NO YES YES

Parameters

(none)

Syntax: ?Sync

83

?Sync

Binary Interface:

Command Byte: 0x39

Parameters: None

Tick count: <timing dependent upon Baud rate>

Return Count: 2 bytes as 1 big endian word

Note: X Servo Ready, Y Servo Ready, and Syncs 1-4 are
inverted logic.

Note: See the following table for return value bit
designations.

Bit position
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Sax Sync #
Xrd Yrd 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Example: ‘?Sync’ -> “39”
(readback) “6F” –> sync 6 and sync 7
asserted, X servo ready and Y servo ready
asserted.

84

?Temp

Command Description: Read servo temperature.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

(none)

Syntax: ?Temp

85

?Temp

Binary Interface:

Command Byte: 0x2B

Parameters: None

Tick count: <timing dependent upon Baud rate>

Return Count: 8 bytes as (4) big endian words

word 1 X-axis servo temperature (J7)
word 2 X-axis alternate servo temperature
word 3 Y-axis servo temperature (J6)
word 4 Y-axis alternate servo temperature

Notes:
Readings are in counts of 4096, 0 – 5V.

Example: ‘?Temp’ -> “2B”

86

?TempOK

Command Description: Check temperature of the given device.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES NO YES YES

Parameters

device_id The device_id specifies from which SAX device to read the
temperature.

device_id Meaning
1 X-axis temperature flag
2 Y-axis temperature flag
3 The logical AND of X and Y temperature flags

Syntax: ?TempOK device_id

87

?TempOK

Binary Interface:

Command Byte: 0x2C

Parameter : 2 bytes as (1) big endian word

Tick count: <timing dependent upon Baud rate>

Return Count: 2 bytes as (1) big endian word

0 = FALSE (device temperature not OK)
1 = TRUE (device temperature OK)

Notes:
When device = 3, the result is the Boolean AND of device 1
and device 2.

Example: ‘?TempOK 1’ -> “2C0001”

88

AbortPgm

Command Description: Halts the currently running program and
disables servos.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES YES YES

Parameters

(none)

Syntax: AbortPgm

Note: AbortPgm will stop all running programs immediately and
disable both servos.

89

AbortPgm

Binary Interface:

Command Byte: 0x20

Parameters: None

Tick count: 0

Return Count: 0

Notes:

Example: ‘AbortPgm’ -> “20”

90

ComConfig

Command Description: Configure RS-232 serial port parameters for
communication.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES YES YES

Parameters

baud_rate baud_rate specifies the speed at which serial communications
takes place. See the following table for the baud_rate specifier
and the associated baud rate.

Parameter Value Baud Rate Setting
1 2400
2 4800
3 9600
4 19,200
5 38,400
6 57,600
7 115,200

data_bits data_bits specifies the number of data bits to use when
communicating over the serial interface.

This value is always 8.

stop_bits stop_bits specifies the number of stop bits to use for an RS-
232 byte transmission.

Parameter Value Stop Bit Setting
1 One stop bit
2 Two stop bits

 parity parity specifies the type of parity to use for RS-232
communications.

Parameter Value Parity Setting
0 No parity
1 Odd parity
2 Even parity

91

interface Interface specifies the type of serial communications interface
to use when communicating with the Scan Controller.

This value is always 232, use RS 232 interface

Syntax: ComConfig baud_rate data_bits stop_bits parity interface

Note: The Scan Controller RS-232 UART is initialized at power-on
for 2400 baud, 8 data bits, 1 stop bit, and no parity. Use
ComConfig to change those settings. Hardware CTS/RTS
handshaking is used exclusively.

92

ComConfig

Binary Interface:

Command Byte: 0x23

Parameters: 10 bytes as (5) big endian words

Tick count: 0

Return Count: 0

Notes:

Example: ‘ComConfig 4 8 1 0 232’ -> “23000400080001000000E8”

94

ConfigPixelClock

Command Description: Configure the Scan Controller on-board time
based pixel clock.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES YES NO

Parameters

Syntax: ConfigPixelClock p1 p2 p3 p4 p5 p6

Note:
Sends 48 bits to command pixel clock.

Bit 0 – 1 for Position based pixel clock
 – 0 for Time based pixel clock

Bit 1- 47 – pixel clock command.

95

ConfigPixelClock

Binary Interface:

Command Byte: 0x1D

Parameters: 6 bytes as a 48 bit binary command.

Tick count: 1

Return Count: 0

Notes: See the National Semiconductor CGS410 User Manual for bit
definitions.

The CLI pixel clock tool provides a graphical user interface to
the pixel clock chip. The binary result sent to the Scan
Controller from the tool is displayed in the Interpreted
Assmbly Statement window see Figure 15 .

Example: ‘ConfigPixelClock 0x33 0x34 0x35 0x36 0x37 0x38’ -> “1D333435363738”

96

CreateFlashPgm

Command Description: The action of Create Flash Program is to initiate the storage
mechanism in the Scan Controller so that a program may be
saved to non-volatile memory on-board the Scan Controller.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

program_type program_type identifies the type of program to be saved.

program_type Meaning
0 This is a Raster program
1 This is a Vector program

program_id program_id is the identification code or program name for the
new flash program. The program_id is a number in the range
1–255.

Syntax: CreateFlashPgm program_type program_id

Example: CreateFlashPgm 1 ’a’

Note: Place CreateFlashPgm with a program type and a program id
that you choose as the first statement in a group of commands
that you wish to permanently store on the Scan Controller. All
commands sent down to the Scan Controller will be saved in
flash memory until the End command is encountered. The
point of execution will pass to these commands when called
with ExecutePGM or ExecuteRasterPgm.

Note: Programs placed in flash memory will remain available even
after the Scan Controller is power cycled. Program Id 1 has a
special purpose; commands saved with program id 1 will
automatically execute when the Scan Controller is powered
up.

Note: If Error Code not equal to zero, commands will not be saved.
Please reclaim Flash space by power cycling the Scan
Controller.

97

CreateFlashPgm

Binary Interface:

Command Byte: 0x1E

Parameters: 4 bytes as (2) big endian words

Tick count: <timing dependent upon Baud rate>

Return Count: 0

Note: Flash programs cannot be uploaded while a program is
running.

Note: If CreateFlashPgm is executed with a program Id that already
identifies a Flash program, the previous program will be
marked for reclamation. Reclamation marking can also be
forced by executing the ReleasePGM command. Space
marked for reclamation will become available for new
programs when the Scan Controller is power cycled.

Example: ‘CreateFlashPgm 1 100’ -> “1E00010065”

98

CreatePgm

Command Description: Store a Scan Controller program in volatile memory on-board
the Scan Controller.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES NO YES YES

Parameters

program_type program_type identifies the type of program to be saved.

program_type Meaning
0 This is a Raster program
1 This is a Vector program

program_id program_id is the identification code or program name for the
new SRAM program. The Program ID is a number in the
range 1–255.

Syntax: CreatePgm program_type Program_id

Note: CreatePgm is the first statement in a program that you wish to
store in the SRAM portion of the Scan Controller memory.
Programs stored in this area will be lost after a power cycle.
CreatePgm initiates a special ‘transfer’ mode where
commands sent after the CreatPgm statement are stored in
SRAM rather the executing immediately. The special
‘transfer’ mode is terminated by the end statement.

Note: Programs stored in the SRAM area of the Scan Controller can
be transferred from the host to the Scan Controller while
another program is executing motion commands. This
operation is undefined if you transfer a new program with the
same name as the one being transferred.

Note: If Error Code is not equal to zero, commands will not be
saved.

99

CreatePgm

Binary Interface:

Command Byte: 0x21

Parameters: 4 bytes as (2) big endian words

Tick count: <timing dependent upon Baud rate>

Return Count: 0

Notes:

Note: If CreatePgm is called with a program Id that already
identifies a SRAM program, the previous SRAM program will
be marked for reclamation. Reclamation marking can also be
forced by executing the ReleasePGM command. Space
marked for reclamation will become available for new
programs by executing the PackMemory command or power
cycling the Scan Controller.

Note: If a new program is uploaded with the same program ID as an
existing Flash program, the program ID will reference the
SRAM program until the Scan Controller is power cycled,
after which the program ID will reference the Flash program
once again.

Example: ‘CreatePgm 1 0xDE’ -> “21000100DE”

100

DelayedSetSync

Command Description: Sets the sync bit for the specified channel after the configured
delay (see SetConfigVar).

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES YES NO

Parameters

channel_mask channel_mask specifies which one of the writable sync
channels is to be set.

channel_mask Meaning
1 Sync Channel 1 (J4, pin 1 pulls low)
2 Sync Channel 2 (J4, pin 2 pulls low)
3 Sync Channel 3 (J4, pin 3 pulls low)
4 Sync Channel 4 (J4, pin 4 pulls low)

13 turns INTCNTL on
14 drives PCLKOUT output with the clock on

CMOS_PCLK input pin

Note: The number of tick counts that DelayedSetSync waits before
setting the named channel is a global variable set by the
SetConfigVar command or the SetSetSyncDelay comamand.

Syntax: DelayedSetSync channel_mask

101

DelayedSetSync

Binary Interface:

Command Byte: 0x36

Parameters: 2 bytes as (1) big endian signed word.

Tick count: 0

Return Count: 0

Notes:

Example: ‘DelayedSetSync 4’ -> “360004”

102

DelayedUnSetSync

Command Description: Resets the sync bit for the specified channel after the
configured delay (see SetConfigVar).

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES YES NO

Parameters

channel_mask channel_mask specifies which one of the writable sync
channels is to be reset. Valid numbers for channel_mask are 1,
2, 3, 4, 13, and 14.

channel_mask Meaning
1 Sync Channel 1 (J4, pin 1 high impedance)
2 Sync Channel 2 (J4, pin 2 high impedance)
3 Sync Channel 3 (J4, pin 3 high impedance)
4 Sync Channel 4 (J4, pin 4 high impedance)

13 turns INTCNTL of
14 Disconnects PCLKOUT output from the

clock on CMOS_PCLK input pin

Note: The number of tick counts that DelayedUnsetSync waits
before setting the named channel is a global variable set by the
SetConfigVar command or the SetSetSyncDelay comamand.

Syntax: DelayedUnsetSync channel_mask

103

DelayedUnsetSync

Binary Interface:

Command Byte: 0x37

Parameters: 2 bytes as (1) big endian signed word.

Tick count: 0

Return Count: 0

Notes:

Example: ‘DelayedUnsetSync 4’ -> “370004”

104

DeltaPosition

Command Description: Set the position of the current axis relative to the current
position.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES NO YES YES YES NO

Parameters

offset offset specifies a new position relative to the current value of
the position command register. The current run-time axis is
referenced for position command register value. offset has
units of DAC counts.

3276732768  offset

Syntax: DeltaPosition device_id

105

DeltaPosition

Binary Interface:

Command Byte: 0x03

Parameter : 2 bytes as (1) big endian signed word

Tick count: 1

Return Count: 0

Notes:

Example: ‘DeltaPosition 550’ -> ‘030226”

106

DeltaPositionXY

Command Description: Set the vector position relative to the current position.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

NO YES NO YES YES NO

Parameters

x-offset x-offset specifies a position relative to the current value of the
X-axis position command register. x-offset has units of DAC
counts.

3276732768  x-offset

y-offset y-offset specifies a position relative to the current value of the
Y-axis position command register. y-offset has units of DAC
counts.

3276732768  y-offset

Syntax: DeltaPositionXY x-offset y-offset

107

DeltaPositionXY

Binary Interface:

Command Byte: 0x04

Parameters: 4 bytes as (2) big endian signed words.

Tick count: 1

Return Count: 0

Notes:

Example: ‘DeltaPositionXY 500 –600’ -> “0401F4FDA8”

108

DeltaSlew

Command Description: Move smoothly on the current axis relative to the current
position.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES NO YES YES YES NO

Parameters

offset offset specifies the distance along the current axis to smoothly
move from the current value of the position command register
of the specified axis over count ticks. offset has units of DAC
counts.

3276732768  offset

count count specifies the number of 23 S ticks in which to
smoothly move in a straight line.

327671 count

Syntax: DeltaSlew offset count

109

DeltaSlew

Binary Interface:

Command Byte: 0x07

Parameters: 4 bytes as (1) big endian signed word and (1) big endian unsigned word.

Tick count: Value of count

Return Count: 0

Notes:

Example: ‘DeltaSlew 4000 31000’ -> “070FA07918”

110

DeltaSlewXY

Command Description: Move smoothly relative to the current vector
position.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

NO YES NO YES YES NO

Parameters

x-offset x-offset specifies the distance along the X-axis to smoothly
move from the current value of the X-axis position command
register over count ticks. x-offset has units of DAC counts.

3276732768  x-offset

y-offset y-offset specifies the distance along the Y-axis to smoothly
move from the current value of the Y-axis position command
register over the count ticks. y-offset has units of DAC counts.

3276732768  y-offset

count Count specifies the number of 23 S ticks in which to
smoothly move in a straight line.

327671 count

Syntax: DeltaSlewXY x-offset y-offset count

111

DeltaSlewXY

Binary Interface:

Command Byte: 0x08

Parameters: 6 bytes as (2) big endian signed words and (1) big endian unsigned word.

Tick count: Value of count

Return Count: 0

Notes:

Example: ‘DeltaSlewXY 230 –450 600’ -> “0800E6FE3E0258”

112

DeltaTweakAxis

Command Description: Apply gain and offset deltas to subsequent raster operations.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES NO YES YES YES YES

Parameters

gain_factor The gain_factor is multiplied by the current axis current
composite gain factor to produce a new composite gain factor.

5.1_5.0  factorgain

offset-delta The offset-delta is added to the current axis current composite
offset to produce the new current axis composite offset. offset-
delta has units of DAC counts.

3276732768  taoffset_del

Syntax: DeltaTweakAxis gain_factor offset-delta

113

DeltaTweakAxis

Binary Interface:

Command Byte: 0x17

Parameters: 4 bytes as (1) big endian unsigned word and (1) big endian signed word.

Tick count: 1

Return Count: 0

Notes:
gain is converted from a float to an integer by the following
formula:

)32768(truncate fgainigain 

Example: ‘DeltaTweakAxis 1.0 10000’ -> “1780002710”

114

DeltaTweakAxisXY

Command Description: Apply gain and offset deltas to subsequent vector operations.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

NO YES NO YES YES YES

Parameters

x-gain_factor The x-gain_factor is multiplied by the current composite X-
axis gain factor to produce a new composite X-axis gain
factor.

5.1__5.0  factorgainx

x-offset-delta The x-offset_delta is added to the current X-axis offset to
produce the new X-axis offset. x-offset-delta has units of DAC
counts.

3276732768  eltax_offset_d

y-gain_factor The y-gain_factor is multiplied by the current composite Y-
axis gain factor to produce a new composite Y-axis gain
factor.

5.1__5.0  factorgainy

y-offset -delta The y-offset _delta is added to the current Y-axis offset to
produce the new Y-axis offset. y-offset-delta has units of DAC
counts.

3276732768  eltay_offset_d

Syntax: DeltaTweakAxisXY x-gain_f x-offset-d y-gain_f y-offset-d

115

DeltaTweakAxisXY

Binary Interface:

Command Byte: 0x18

Parameters: 8 bytes as (1) big endian unsigned word, (1) big endian signed
word, (1) big endian unsigned word, and (1) big endian signed
word.

Tick count: 1

Return Count: 0

Notes:
gain is converted from a float to an integer by the following
formula:

)32768(truncate fgainigain 

Example: ‘DeltaTweakAxisXY 0.8 –200 1.02 10’ -> “186666FF38828F000A”

116

Disable

Command Description: The disable command will disable the specified SAXes
connected to the Scan Controller.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES YES NO

Parameters

device_id device_id specifies that either or both of the SAX servos are to
be disabled.

Device_id Meaning
1 X-axis servo
2 Y-axis servo
3 Both servos

Syntax: Disable device_id

117

Disable

Binary Interface:

Command Byte: 0x15

Parameter: 2 bytes as (1) big endian signed word.

Tick count: 1

Return Count: 0

Notes:

Example: ‘Disable 1’ -> “150001”

118

Enable

Command Description: The Enable command will enable the specified SAXes
connected to the Scan Controller.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES YES NO

Parameters

device_id The device_id specifies that either or both of the SAX servos
are to be enabled.

device_id Meaning
1 X-axis servo
2 Y-axis servo
3 Both servos

Syntax: Enable device_id

119

Enable

Binary Interface:

Command Byte: 0x14

Parameter: 2 bytes as (1) big endian signed word

Tick count: 1

Return Count: 0

Notes:

Example: ‘Enable 1’ -> “140001”

120

End

Command Description: Marks the end of a Scan Controller program.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES NO YES

Parameters

(none)

Syntax: End

Note: The End command marks the end of a program that is to be
stored in a memory area of the Scan Controller. The End
command takes the Scan Controller out of ‘transfer’ mode
such that motion commands are executed immediately if the
Scan Controller is in idle mode.

121

End

Binary Interface:

Command Byte: 0x16

Parameters: 4 bytes as (1) unsigned little endian long word

Tick count: <timing dependent upon Baud rate>

Return Count: 0

Notes: CRC values are computed using the CRC32 algorithm. A
sample C language program that computes the CRC checksum
of a ASCII hex program is shown in the appendix (see
Program to generate CRC at the end of the document). A
default CRC value of 0xFFFFFFFF can be used to upload a
program without the benefit of CRC checking. If CRC
checking is required, please note that the ‘createpgm‘
statement and the ‘end’ statement (first and last lines) are not
included in the CRC checksum computation.

Example: ‘End’ -> “16FFFFFFFF”

122

ExecutePgm

Command Description: Commence the execution of the named program.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES* YES* YES* YES* YES* NO

Parameters

program_id program_id is the identification code or program name of the
program that is to be deleted. The program_id is a number in
the range 1–255.

Syntax: ExecutePgm program_id

Note: program_id must identify a vector command file if:
 ExecutePgm is issued by the user following a VECTOR

command.
 ExecutePgm is called from a vector command file.

program_id must identify a raster command file if:
 ExecutePgm is issued by the user following a RASTER

<axis> command.
 ExecutePgm is called from a raster command file.

ExecutePgm starts executing a function/program stored on the
embedded controller.

The user provides a program id when the code is stored on the
embedded controller using CreateFlashPgm or CreatePgm
to identify Functions/programs. This id is then used with
ExecutePgm to invoke the stored code.

Program Ids assigned to programs stored in either flash or
RAM range from 1 to 255. If ExecutePgm is called with a
program id that is out of range or that has no code previously
stored, then an error will be generated and nothing gets
executed. If another program is currently running an error will
be returned. Also an error is generated if ExecutePgm is
called with a pgm id that doesn’t obey the rules for pgm id
stated above.

123

ExecutePgm

Binary Interface:

Command Byte: 0x0E

Parameters: 2 bytes as (1) big endian signed word.

Tick count: less than 3

Return Count: 0

Notes:

Example: ‘ExecutePgm 0x45’ -> “0E0045”

124

ExecuteRasterPgm

Command Description: Enter Dual Single Axis mode and commence the execution of
the named raster programs.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

NO YES NO YES YES NO

Parameters

x_pgm_id x_pgm_id is the identification code or program name for the
raster program that will run on the X-axis. x_pgm_id is a
number in the range 1–255.

y_pgm_id y_pgm_id is the identification code or program name for the
raster program that will run on the Y-axis. y_pgm_id is a
number in the range 1–255.

Syntax: ExecuteRasterPgm x_pgm_id y_pgm_id

Note: To start two independent operations for raster operation, call
ExecuteRasterPgm with two arguments, a program id for the
x-axis and a program id for the y-axis.

Program IDs range from 1 to 255. If ExecuteRasterPgm is
called with a program id that is out of the acceptable range or
if the given program ID has no code associated with it, an
error will be generated and nothing gets executed. If another
program is currently running an error will be returned.

125

ExecuteRasterPgm

Binary Interface:

Command Byte: 0x0F

Parameters: 4 bytes as (2) big endian signed words.

Tick count: less than 3

Return Count: 0

Notes:

Example: ‘ExecuteRasterPgm 234 235’ -> “0F00EA00EB”

126

ExitPgm

Command Description: Use ExitPgm to terminate programs by having them fall
through repeat and waitsync [1-4] statements.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES YES YES

Parameters

(none)

Syntax: ExitPgm

Note: When ExitPgm is used to terminate a program there may be a
delay before the program finally stops. Termination of the
program can be determined over the communications link by
issuing the ?Status command. ?Status will report back
ExitPgm Success (000000250000) when the program finally
terminates.

Note: When ExitPgm is issued while a program is not running and
then ?Status is entered next, the command field in the status
report will not be set to ExitPgm but rather the last command
executed befoe the ExitPgm command.

Note: ExitPGM works by suppressing the iteration property of the
Repeat statement and the pause for synchronization property
of the WaitSync[1-4] statement. Note that only sync channels
1-4 are suppressed; if ExitPGM is applied to a program that is
waiting on a sync channel in the range 5-12, the external
stimulus will have to be applied to the channel or the
AbortPGM command will have to be used.

127

ExitPgm

Binary Interface:

Command Byte: 0x25

Parameters: None

Tick count: dependent upon the program call depth and program structure

Return Count: 0

Notes:

Example: ‘ExitPgm’ -> “25”

128

If

Command Description: Execute an instruction if a sync Channel is set.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES* YES YES* YES YES NO

Parameters

sync_channel sync_channel specifies which one of the readable sync
channels shall be used in the If command. Valid numbers for
sync_channel are 1 – 12.

Syntax 1: If sync_channel ExecuteRasterPgm x_pgm_id y_pgm_id

Syntax 2: If sync_channel ExecutePgm program_id

Example: If 5 ExecutePgm ’a’

Example: If 12 ExecuteRasterPgm 5 45

Note: The If statement is a special idiom of the Scan Controller
language in that two commands are written in one statement.
The command to be executed as the consequent of the if
statement is constrained to be either ExecutePgm or
ExecuteRasterPgm.

Note: The If <channel> ExecuteRasterPgm statement can only be
issued from a vector program or from the command line.

129

If

Binary Interface:

Command Byte: 0x0A for If <chan> ExecutePGM, 0x0B for If <chan> ExecuteRasterPgm

Parameters:
 2 bytes as 1 big endian signed word for ExecutePgm.
 4 bytes as 2 big endian signed words for

ExecuteRasterPgm.

Tick count: less than 3

Return Count: 0

Notes:

Example: ‘If 7 ExecutePgm 0x45’ -> “0A00070045”

Example: ‘If 7 ExecuteRasterPgm 7 7’ -> “0B000700070007”

130

If TempOK

Command Description: Execute an instruction if a device temperature is acceptable.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES* YES YES* YES YES NO

Parameters

device_id The device_id specifies from which SAX device to read the
temperature.

device_id Meaning
1 X-axis temperature flag
2 Y-axis temperature flag
3 The logical AND of X and Y temperature flags

Syntax 1: If TempOK device_id ExecuteRasterPgm x_pgm_id y_pgm_id

Syntax 2: If TempOK device_id ExecutePgm program_id

Example: If TempOK 3 ExecuteRasterPgm ’a’ ’d’

Example: If TempOK 1 ExecutePgm 45

Note: The If TempOK statement is a special idiom of the Scan
Controller language in that two commands are written in one
statement. The command to be executed as the consequent of
the if statement is constrained to be either ExecutePgm or
ExecuteRasterPgm.

Note: The If TempOK <device> ExecuteRasterPgm statement can
only be issued from a vector program or from the command
line.

131

If TempOK

Binary Interface:

Command Byte: 0x0C for If TempOK <device> ExecutePGM, 0x0D for If TempOK <device> ExecuteRasterPgm

Parameters:
 2 bytes as (1) big endian signed word for ExecutePGM.
 4 bytes as (2) big endian signed words for

ExecuteRasterPgm.

Tick count: less than 3

Return Count: 0

Notes:

Example: ‘If TempOK 2 ExecutePgm 5’ -> “0C00020005”

Example: ‘If TempOK 2 ExecuteRasterPgm 56 57’ -> “0D000200380039”

132

NRepeat

Command Description: The NRepeat command will cause the Scan Controller
program flow to return to the first instruction in the program
where execution is repeated a given number of times.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES NO NO

Parameters

Repeat_count repeat_count specifies the number of times NRepeat will
return to the first instruction before fall through to the next
instruction.

32768_0  countREpeat

Syntax: Nrepeat repeat_count

Note: A repeat_count of zero will cause the command to act in the
same manner as the repeat instruction.

Note: A given program can contain only one NRepeat command but
a program that uses NRepeat may call other programs that use
NRepeat.

Note: NRepeat differs from the Repeat instruction in that additional
commands may follow the NRepeat statement.

133

NRepeat

Binary Interface:

Command Byte: 0x38

Parameters: 2 bytes as (1) big endian signed word.

Tick count: 0

Return Count: 0

Notes:

Example: ‘Nrepeat 12’ -> “38000C”

134

PackMemory

Command Description: Reclaim memory from deleted programs and previous
program versions and then compact available memory.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

(none)

Syntax: PackMemory

Note: PackMemory will reclaim fragmented space in SRAM
memory. This operation is automatically performed each time
the system powers up as the SRAM is volatile memory.
Memory fragmentation will occur when 1) a new program is
uploaded with the same name as an existing program or 2) the
ReleasePGM command is run on a given program ID.

Note: Flash memory is packed by issuing the ReleasePGM on the
given program and then power-cycling the Scan Controller.

135

PackMemory

Binary Interface:

Command Byte: 0x1F

Parameters: None

Tick count: <dependent upon memory fragmentation>

Return Count: 0

Notes:

Example: ‘PackMemory’ -> “1F”

136

Position

Command Description: Set the absolute position of the current axis.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES NO YES YES YES NO

Parameters

coord Set the absolute position on the current axis to coord. coord
has units of DAC counts.

3276732768  coord

Syntax: Position coord

Note: The position command can generate large servo motions
faster than the mechanical system response. Please use
position commands with care.

137

Position

Binary Interface:

Command Byte: 0x01

Parameters: 2 bytes as (1) big endian signed word.

Tick count: 1

Return Count: 0

Notes:

Example: ‘Position 300’ -> “01012C”

138

PositionXY

Command Description: Set the absolute vector position.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

NO YES NO YES YES NO

Parameters

x-coord Set the absolute position of the X-axis to x-coord. x-coord has
units of DAC counts.

3276732768  x_coord

y-coord Set the absolute position of the Y-axis to y-coord. y-coord has
units of DAC counts.

3276732768  y_coord

Syntax: PositionXY x-coord y-coord

139

PositionXY

Binary Interface:

Command Byte: 0x02

Parameters: 4 bytes as (2) big endian signed words.

Tick count: 1

Return Count: 0

Notes:

Example: ‘PositionXY 5000 4000’ -> “0213880FA0”

140

Raster

Command Description: Declare the target axis for subsequent single axis (raster)
commands and place the Scan Controller in raster mode.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

axis Specifies the axis on which subsequent motion command will
operate. axis is a number defined as follows:

axis Meaning
1 X-axis
2 Y-axis

Syntax: Raster axis

141

Raster

Binary Interface:

Command Byte: 0x19

Parameters: 2 bytes as (1) big endian signed word

Tick count: 1

Return Count: 0

Notes:

Example: ‘Raster 1’ -> “190001”

142

ReleasePgm

Command Description: Mark the named program as deleted.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES NO YES YES

Parameters

program_id program_id is the identification code or program name of the
program that is to be deleted. The program_id is a number in
the range 1–255.

Syntax: ReleasePgm program_id

Note: The action of ReleasePgm is to mark a program as available
for reclamation inorder to recover memory for other programs.
In the case of SRAM memory the PackMemory command
may be issued for memory compaction. In the case of Flash
Memory, the Scan Controller must be power cycled for Flash
Memory compaction.

143

ReleasePgm

Binary Interface:

Command Byte: 0x22

Parameters: 2 bytes as (1) big endian signed word.

Tick count: 1

Return Count: 0

Notes:

Example: ‘ReleasePgm ’a’’ -> “220061”

144

Repeat

Command Description: The Repeat command will cause the Scan Controller program
flow to return to the first instruction in the program where
execution is repeated.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES NO NO

Parameters

(none)

Syntax: Repeat

145

Repeat

Binary Interface:

Command Byte: 0x09

Parameters: None

Tick count: 0

Return Count: 0

Notes:

Example: ‘Repeat’ -> “09”

146

SaveConfigInFlash

Command Description: Save the values of configuration variables into non-volatile
memory.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

(none)

Syntax: SaveConfigInFlash

Note: The following variables will be save to flash when this
command is invoked:
 X-Position-Readback-Offset
 Y-Position-Readback-Offset
 X-Position-Readback-Gain
 Y-Position-Readback-Gain
 Global-Sample-Size
 DelayedSetSync delay
 DelayedUnsetSync delay

Note: This command show only be invoked when the Scan
Controller is in idle mode.

147

SaveConfigInFlash

Binary Interface:

Command Byte: 0x35

Parameters: None

Tick count: 1

Return Count: 0

Notes:

Example: ‘SaveConfigInFlash’ -> “35”

148

SetConfigVar

Command Description: Sets the value of a configuration variable.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

Id Id identifies the job to perform.

Value Value is the value that the variable will take.

Syntax: SetConfigVar Id Value

Note:

Configuration Variables

Id Variable Values(default) See Command
1 Global Sample Size 1 to 100 (10) WaitPositionXY, WaitPosition
2 X readback gain correction 0.5 to 1.5
3 X readback offset correction -32,768 to 32,767
4 Y readback gain correction 0.5 to 1.5
5 Y readback offset correction -32,768 to 32,767

WaitPositonXY, WaitPositon,
?Position

6 SetSync delay 0 to 32,767 DelayedSetSync
7 UnSetSync delay 0 to 32,767 DelayedUnSetSync

Note: The Global Sample size is the number of position readings
that will be used in by the WaitPosition calculations (see
WaitPositionXY and WaitPosition).

Note: The gain and offset variables are the correction factors to be
applied to the position readings so it will agree with the axis
position register values that are sent to the SAX.

149

SetConfigVar

Binary Interface:

Command Byte: 0x30

Parameters: 4 bytes as (2) big endian unsigned words

Tick count: 1

Return Count: 0

Notes:
 Parameter value checking is not performed on this

command.
 Gain values must be translated manually.

gain is converted from a float to an integer by the
following formula:

)32768(truncate fgainigain 

Example: ‘SetConfigVar 1 25’ -> “3000010019”

150

SetGSS

Command Description: Set the sample size of the position readback buffer.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

Buffer_Size Set the size of the position readback buffer to Buffer_Size.

100_1  SizeBuffer

Syntax: SetGSS Buffer_Size

Note: The mnemonic used is SetGlobalSampleSize

Note: Power on default value is the value saved in Flash.

151

SetGSS

Binary Interface:

Command Byte: 0x30

Parameters: 4 bytes as the constant 0x0001 and (1) unsigned word.

Tick count: 1

Return Count: 0

Notes:

Example: ‘SetGSS 50’ -> “3000010032”

152

SetSetSyncDelay

Command Description: Set the global value of the tick delay for the DelayedSetSync
command.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

delay Set the tick delay for the DelayedSetSync command to the
value delay.

327670 delay

Syntax: SetSetSyncDelay delay

Note: Power on default value is the value saved in Flash.

153

SetSetSyncDelay

Binary Interface:

Command Byte: 0x30

Parameters: 4 bytes as the constant 0x0006 and (1) big endian unsigned word.

Tick count: 1

Return Count: 0

Notes:

Example: ‘SetSetSyncDelay 31’ -> “300006001F”

154

SetUnsetSyncDelay

Command Description: Set global value of the tick delay for the DelayedUnsetSync
command.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

delay Set the tick delay for the DelayedUnsetSync command to the
value delay.

327670 delay

Syntax: SetUnsetSyncDelay delay

Note: Power on default value is the value saved in Flash.

155

SetUnsetSyncDelay

Binary Interface:

Command Byte: 0x30

Parameters: 4 bytes as the constant 0x0007 and (1) big endian unsigned word.

Tick count: 1

Return Count: 0

Notes:

Example: ‘SetUnsetSyncDelay 31’ -> “300007001F”

156

SetXPRGain

Command Description: Set the value of the X-axis position readback correction
coefficient.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

gain Set the X-axis position readback gain coefficient to the value
gain.

5.15.0 gain

Syntax: SetXPRGain gain

Note: The mnemonic used is SetXPositionReadbackGain

Note: Power on default value is the value saved n Flash.

157

SetXPRGain

Binary Interface:

Command Byte: 0x30

Parameters: 4 bytes as the constant 0x0002 and (1) big endian unsigned word.

Tick count: 1

Return Count: 0

Notes:
gain is converted from a float to an integer by the following
formula:

)32768(truncate fgainigain 

Example: ‘SetXPRGain 1.1’ -> “3000020000”

158

SetXPROffset

Command Description: Set the value of the X-axis position readback correction
constant.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

offset Set the value of the X-axis position readback offset correction
to offset.

3276732768  offset

Syntax: SetXPROffset offset

Note: The mnemonic used is SetXPositionReadbackOffset

Note: Power on default value is the value saved in Flash.

159

SetXPROffset

Binary Interface:

Command Byte: 0x30

Parameters: 4 bytes as the constant 0x0003 and (1) big endian signed
word.

Tick count: 1

Return Count: 0

Notes:

Example: ‘SetXPROffset 102’ -> “0900030066”

160

SetYPRGain

Command Description: Set the value of the Y-axis position readback correction
coefficient.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

gain Set the value of the Y-axis position readback correction
coefficient to the value gain.

5.15.0 gain

Syntax: SetYPRGain gain

Note: The mnemonic used is SetYPositionReadbackGain

Note: Power on default value is the value saved in Flash.

161

SetYPRGain

Binary Interface:

Command Byte: 0x30

Parameters: 4 bytes as the constant 0x0004 and (1) big endian unsigned word.

Tick count: 1

Return Count: 0

Notes:
gain is converted from a float to an integer by the following
formula:

)32768(truncate fgainigain 

Example: ‘SetYPRGain 0.9’ -> “300004”

162

SetYPROffset

Command Description: Set the value of the Y-axis position readback offset correction.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

offset Set the value of the Y-axis position readback offset correction
constant to offset.

3276732768  offset

Syntax: SetYPROffset offset

Note: The mnemonic used is SetYPositionReadbackOffset

Note: Power on default value is the value saved in Flash.

163

SetYPROffset

Binary Interface:

Command Byte: 0x30

Parameters: 4 bytes as the constant 0x0005 and (1) big endian signed
word.

Tick count: 1

Return Count: 0

Notes:

Example: ‘SetYPROffset -1740’ -> “300005F92F”

164

SetSync

Command Description: Sets the sync bit for the specified channel.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES YES NO

Parameters

channel_mask channel_mask specifies which one of the writable sync
channels is to be set.

Syntax: SetSync channel_mask

channel_mask Meaning
1 Sync Channel 1 (J4, pin 1 pulls low)
2 Sync Channel 2 (J4, pin 2 pulls low)
3 Sync Channel 3 (J4, pin 3 pulls low)
4 Sync Channel 4 (J4, pin 4 pulls low)

13 turns INTCNTL on
14 drives PCLKOUT output with the clock on

CMOS_PCLK input pin

165

SetSync

Binary Interface:

Command Byte: 0x12

Parameters: 2 bytes as (1) big endian signed word.

Tick count: 0

Return Count: 0

Notes:

Example: ‘SetSync 4’ -> “120004”

166

Slew

Command Description: Move smoothly to the given absolute position on the current
axis in the specified number of tick counts.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES NO YES YES YES NO

Parameters

coord The absolute position on the current axis to slew to coord.

3276732768  coord

count The number of 23 S ticks that it will take to complete the
slew motion.

327671 count

Syntax: Slew coord count

Note: Gradually moves to the given x and y positions over count
number of 23 S ticks.

167

Slew

Binary Interface:

Command Byte: 0x05

Parameters: 4 bytes as (1) big endian signed word and (1) big endian unsigned word.

Tick count: value of count

Return Count: 0

Notes:

Example: ‘Slew 5000 350’ -> “051388015E”

168

SlewXY

Command Description: Move smoothly to the given absolute vector position in the
specified number of tick counts.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

NO YES NO YES YES NO

Parameters

x-coord The absolute position of the X-axis destination.

3276732768  x_coord

y-coord The absolute position of the Y-axis destination.

3276732768  y_coord

count count specifies the number of 23 S ticks in which to
smoothly move in a straight line.

327671 count

Syntax: SlewXY x-coord y-coord count

Note: Gradually moves to the given x and y positions over count
number of 23 S ticks.

169

SlewXY

Binary Interface:

Command Byte: 0x06

Parameters: 6 bytes as (2) big endian signed words and (1) big endian unsigned word.

Tick count: Value of count

Return Count: 0

Notes:

Example: ‘SlewXY 5000 5000 450’ -> “061388138801C2”

170

TweakAxis

Command Description: Apply gain and offset to subsequent axis operations.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES NO YES1 YES YES YES

Parameters

gain The gain factor is applied to the motion command coordinates
of the current axis where a gain of 1.0 corresponds to the
identity transformation.

5.15.0 gain

offset offset describes the offset of the origin of the current axis for
motion commands.

3276732768  offset

Syntax: TweakAxis gain offset

Note: TweakAxis a raster mode command used to set the absolute
gain and offset values of the current axis.

Note 1: TweakAxis may not be issued concurrent with Dual Single
Axis mode but it may be a program instruction in either or
both of the Dual Single axis programs.

171

TweakAxis

Binary Interface:

Command Byte: 0x1B

Parameters: 4 bytes as (1) big endian unsigned word and (1) big endian signed word.

Tick count: 1

Return Count: 0

Notes:
gain is converted from a float to an integer by the following
formula:

)32768(truncate fgainigain 

Example: ‘TweakAxis 1.0 0’ -> “1B80000000”

172

TweakAxisXY

Command Description: Apply gain and offset to subsequent vector operations.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

NO YES YES1 YES YES YES

Parameters

x-gain The gain factor is applied to the motion command coordinates
of the X-axis where an x-gain of 1.0 corresponds to the
identity transformation.

5.1_5.0  gainx

x-offset x-offset describes the offset of the origin of the X-axis for
motion commands.

3276732768  x_offset

y-gain The gain factor is applied to the motion command coordinates
of the Y-axis where a y-gain of 1.0 corresponds to the identity
transformation.

5.1_5.0  gainy

y-offset y-offset describes the offset of the origin of the Y-axis for
motion commands.

3276732768  y_offset

Syntax: TweakAxisXY x-gain x-offset y-gain y-offset

Note 1: TweakAxisXY may be issued concurrent with Dual Single Axis
mode but may not be a program instruction contained in one
of the Dual Single Axis mode programs.

Note: TweakAxisXY is a vector mode command used to set the gain
and offset values for both the X and Y axis.

173

TweakAxisXY

Binary Interface:

Command Byte: 0x1C

Parameters: 8 bytes as (1) big endian unsigned word, (1) big endian signed
word, (1) big endian unsigned word and (1) big endian signed
word.

Tick count: 1

Return Count: 0

Notes:
gain is converted from a float to an integer by the following
formula:

)32768(truncate fgainigain 

Example: ‘TweakAxisXY 1.0 0 1.0 0’ -> “1C8000000080000000”

174

UnSetSync

Command Description: Resets the Sync bit for the specified channel.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES YES NO

Parameters

channel_mask channel_mask specifies which one of the writable sync
channels is to be reset. Valid numbers for channel_mask are 1,
2, 3, 4, 13, and 14.

channel_mask Meaning
1 Sync Channel 1 (J4, pin 1 high impedance)
2 Sync Channel 2 (J4, pin 2 high impedance)
3 Sync Channel 3 (J4, pin 3 high impedance)
4 Sync Channel 4 (J4, pin 4 high impedance)

13 turns INTCNTL of
14 Disconnects PCLKOUT output from the

clock on CMOS_PCLK input pin

Syntax: UnsetSync channel_mask

175

UnsetSync

Binary Interface:

Command Byte: 0x13

Parameters: 2 bytes as (1) big endian signed word.

Tick count: 1

Return Count: 0

Notes:

Example: ‘UnsetSync 4’ -> “130004”

176

Vector

Command Description: Place the Scan Controller in vector mode.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES NO NO YES NO

Parameters

(none)

Syntax: Vector

Note: The Vector command is used to change the operational mode
of the Scan Controller to Vector operations. In the Vector
mode, the Scan Controller will only accept motion commands
of type vector, commands that have the XY suffix. Also, only
programs of type 1 can be executed with the ExecutePgm
command. Raster programs can be executed from vector mode
with the ExecuteRaterPgm command.

177

Vector

Binary Interface:

Command Byte: 0x1A

Parameters: None

Tick count: 1

Return Count: 0

Notes:

Example: ‘Vector’ -> “1A”

178

Wait

Command Description: Pause execution for the given number of tick counts.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES YES NO

Parameters

wait_count Pause execution of commands, either immediate or in a
program, for count number of 23 S tick. Count is a number
between 0 and 4294967296.

Syntax: Wait wait_count

179

Wait

 Binary Interface:

Command Byte: 0x10

Parameters: 4 bytes as (1) middle endian double word.

Tick count: Value of count

Return Count: 0

Notes:

Example: ‘Wait 56000’ -> “10DAC00000”

Given 0x 00 00 DA C0
 1 | 2 | 3 | 4

send the bytes in the order 3 4 1 2

180

WaitPosition

Command Description: Pause Scan Controller program execution until the
commanded position for the current axis is reached.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES NO YES YES YES NO

Parameters

dev dev is the deviation limit, in DAC counts, about the target X-
axis position.

Syntax: WaitPosition dev

Note: The computed deviation is the size of the window around the
commanded position it takes the form of

 nnetTdev
n

RMS PosPos 
1

2

arg

with n being the value of the global sample size parameter (see
configuration settings). The larger the value of n the better
rejection of overshoot of the galvo’s position but the slower
the response. If the user wants to act on the current position
reading n can be set to 1. Program execution stops at the
WaitPosition command until RMSdevdev  .

Note: When using WaitPosition in dual single axis mode, remember
each axis program will move on when the position for it’s axis
meets the specified requirement. This will not keep the axis
program in sync. In fact it may very well cause them to lose
sync if there has been an effort to synchronize them.

Example: If the user wants a 10 count window averaged over five 23S
readings, set the deviation to 10 and the sample size to 5.

181

WaitPosition

Binary Interface:

Command Byte: 0x32

Parameters: 2 bytes as (1) big endian word.

Tick count: dependent on servo

Return Count: 0

Notes:

Example: ‘WaitPosition 1500’ -> “3205DC”

182

WaitPositionXY

Command Description: Pause Scan Controller program execution until the
commanded position is reached.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

NO YES NO YES YES NO

Parameters

X-dev X-dev is the deviation value about the target X-axis position.

Y-dev Y-dev is the deviation value about the target Y-axis position.

Syntax: WaitPositionXY X-dev Y-dev

Note: The computed deviation is the size of the window around the
commanded position it takes the form of

 nnetTdev
n

RMS PosPos 
1

2

arg

with n being the value of the global sample size parameter (see
configuration settings). The larger the value of n the better
rejection of overshoot of the galvo’s position but the slower
the response. If the user wants to act on the current position
reading n can be set to 1. Program execution stops at the
WaitPosition command until RMSdevdev  for both axis’.

Note: When using WaitPosition in dual single axis mode, remember
each axis program will move on when the position for its axis
meets the specified requirement. This will not keep the axis
program in sync. In fact it may very well cause them to lose
sync if there has been an effort to synchronize them.

Example: If the user wants a 10 count window averaged over 5 23Sec
readings, set the deviation to 10 and the sample size to 5.

183

WaitPositionXY

Binary Interface:

Command Byte: 0x31

Parameters: 4 bytes as (2) big endian words.

Tick count: dependent on servo

Return Count: 0

Notes:

Example: ‘WaitPositionXY 2000 -4000’ -> “3107D0F060”

184

WaitSync

Command Description: Pause Scan Controller program execution until the specified
sync channel is set.

Valid Run-time Modes
Raster Mode Vector Mode Dual Single

Axis Mode
Program

Instruction
Immediate
Instruction

Concurrent
Instruction

YES YES YES YES YES NO

Parameters

sync_channel sync_channel specifies which one of the readable sync
channels shall be used to operate the WaitSync command.

sync_channel Meaning
1 Pause execution until a setsync 1 command is executed.
2 Pause execution until a setsync 2 command is executed.
3 Pause execution until a setsync 3 command is executed.
4 Pause execution until a setsync 4 command is executed.
5 Pause execution until J4, pin 6 goes high
6 Pause execution until J4, pin 7 goes high
7 Pause execution until J4, pin 8 goes high
8 Pause execution until J4, pin 9 goes high
9 Pause execution until J4, pin 10 goes high
10 Pause execution until J4, pin 11 goes high
11 Pause execution until J4, pin 12 goes high
12 Pause execution until J4, pin 13 goes high

Syntax: WaitSync sync_channel

185

WaitSync

Binary Interface:

Command Byte: 0x11

Parameters: 2 bytes as (1) big endian signed word.

Tick count: if sync channel is true tick count = 0, if sync channel is false
count = real time.

Return Count: 0

Notes:

Example: ‘WaitSync 5’ -> “110005”

186

Binary Command Format:

Operating Command Syntax 8 Bit
ID 3

16 Bit
Value

16 Bit
Value

16 Bit
Value

16 Bit
Value

D
e
c

h
e
x

Position <pos> 1 1 position
PositionXY <x pos> <y pos> 2 2 X position Y position
DeltaPosition <rel pos> 3 3 rel position
DeltaPositionXY <x rel pos> <y rel pos> 4 4 X rel pos Y rel pos
Slew <position> <count> 5 5 position Count
SlewXY <x pos> <y pos> <count> 6 6 X position Y position count
DeltaSlew <rel pos> <count> 7 7 rel position count
DeltaSlewXY <x rel pos> <y rel pos> <count> 8 8 X rel pos Y rel pos count
Repeat 9 9
If <channel> ExecutePgm <pgm-id> 10 A channel pgm id
If <channel> ExecuteRasterPgm <pgm-id> <pgm-id> 11 B channel X pgm-id Y pgm id
If TempOK<device> ExecutePgm <pgm-id> 12 C device pgm id
If TempOK<device> ExecuteRasterPgm <X-id><Y-id> 13 D device X pgm-id Y pgm id
ExecutePgm <pgm-id> 14 E pgm id
ExecuteRasterPgm <x-axis pgm-id> <y-axis pgm-id> 15 F X pgm-id Y pgm id
Wait <count> 16 10 lo-count hi-count
WaitSync <channel> 17 11 channel
SetSync <channel> 18 12 channel
UnSetSync <channel> 19 13 channel
Enable <device number> 20 14 device
Disable <device number> 21 15 device
DeltaTweakAxis 23 17 Inc gain Inc offset
DeltaTweakAxisXY 24 18 Inc x-gain Inc x-offset Inc y-gain Inc y-offset
TweakAxis <gain> <offset> 27 1B <gain> <offset>
TweakAxisXY <xgain> <xoffset> <ygain><yoffset> 28 1C <xgain> <xoffset> <ygain> <yoffset>
ConfigPixelClock 29 1D <bytes 1,2> <bytes 3,4> <bytes 5,6>
AbortPgm 32 20
ComConfig <1><2><3><4><5><6> 35 23 <baud> <data bits> <stop bits> <parity><*>
ExitPgm 37 25
WaitPositionXY <X-deviation> <Y-deviation> 49 31 <x-devia> <y-devia>
WaitPosition <deviation> 50 32 <deviatio>
DelayedSetSync <channel> 54 36 channel
DelayedUnsetSync <channel> 55 37 channel
Nrepeat <r-count> 56 38 r-count

3 Command ID is 8 bits when received over the communication link. When fetched from
byte memory it is 16 bits.

187

User Command Syntax 8 Bit
ID 2

16 Bit
Value

16 Bit
Value

16 Bit
Value

16 Bit
Value

dec He
x

End 22 16 CRC lo CRC hi
Raster <axis> 25 19 1- x 2 - y
Vector 26 1A
CreateFlashPgm <type><pgm id> 30 1E <pgm type> <pgm id>
PackMemory 31 1F
CreatePgm <type><pgm id> 33 21 <pgm type> <pgm id>
ReleasePgm 34 22 <pgm id>
?FreeFlashSpace 38 26
?FreeRAMSpace 39 27
?ID 41 29
?Position <axis> 42 2A 1- x 2 - y
?Temp 43 2B
?TempOK <device number> 44 2C <device>
?OpticalCal 45 2D
SetConfigVar <Id> <value> 48 30 <Id> <value>
SetGSS <length> 48 30 1 <length>
SetXPROffset <offset> 48 30 2 <offset>
SetXPRGain <gain> 48 30 3 <gain>
SetYPROffset <offset> 48 30 4 <offset>
SetYPRGain <gain> 48 30 5 <gain>
SetSetSyncDelay 48 30 6 <t-delay>
SetUnsetSyncDelay 48 30 7 <t-delay>
SaveConfigInFlash 53 35
?Sync 57 39
?Status 255 FF 0xFFFF 0xFFFF 0xFFFF 0xFFFF

When a program is running, only the highlighted commands may be issued by the user.
Any other command will cause an error.

<*> - more bytes to follow

2 See footnote prev page

188

Scan Controller error codes

0 "Success."

1 "Type argument not 0 or 1."

2 "Not in raster mode."

3 "X-Axis Program is not of type Raster"

4 "Y-Axis Program is not of type Raster."

5 "Program is not of type Raster"

6 "Not in vector mode."

7 "Program is not of type Vector"

8 "Invalid channel number"

9 "Invalid channel number"

10 "Axis argument not 1 or 2."

12 "Invalid device number."

13 "X-Axis Program ID not in the range 1 - 255."

14 "Y-Axis Program ID not in the range 1 - 255."

15 "Program ID not in the range 1 - 255."

16 "Y-Axis Program ID is marked as inactive."

17 "Program ID is marked as inactive."

18 "Program ID is unassigned."

19 "X-Axis Program ID is marked as inactive."

20 "Another program is already running."

21 " Illegal command while a program is running.”

22 "Illegal data bits."

23 "Unsupported baud rate."

24 "Illegal media type."

26 "Illegal stop bits."

27 "Illegal parity."

28 "Unknown command number encountered."

29 "PIR UART Line Status Error."

189

30 "BDMA Read Queue Overflow."

31 "Stack Overflow - caused when program nesting too deep."

32 "Stack Underflow."

33 "Repeat command not issued from a command file."

34 "Dispatch Queue Overflow."

35 "Out Of Flash Memory."

36 "Out Of SRAM Memory."

37 "Out of Flash Memory Allocation Table Space."

38 "Out of SRAM Memory Allocation Table Space."

39 "Computed CRC did not match received CRC."

40 "Startup encountered an unknown command."

41 "Cannot write to memory, memory locked."

42 "Invalid Id."

43 "Parameter out of range."

44 " X Axis SAX not ready"

45 " Y Axis SAX not ready"

46 " Sync Queue Overflow"

47 " Command is not legal in a program"

48 " Command is not an immediate command"

49 " RS-485 not yet supported"

190

Binary Interface Definition
 Copyright 1998, 1999 GSI Lumonics, Inc.

This section defines the relationship between the Scan Controller Assembly language and the binary machine language
transmitted to the SC2000 Scan Controller.

#%%DI assembler syntax file%%
#Author: Fred Stewart
#Date 9-16-99

Format of command description record

field 1: command text
field 2: number of input parameters
field 3: binary ID
field 4: input parameter and implicit parameter format strings
field 5: command execution context
field 6: number of bytes to read back
field 7: readback interpretation
field 8: binary format string

#######################################

######### Field descriptions ############

Field 1: command text
Abstract: The text of the command as a collection index. Note that
multi-word statements are mangled down to one word my removing
all intervening parameters and whitespace. The 'command text'
is downcased when the syntax file is read into the assembler.
Note, all commands are sent as BYTE

Field 2: number of input parameters
Abstract: The number of parameters that the command takes. Note that
all parameters are required. The end statement has an implicit
parameter (CRC value) that does not appear in the source line.

Field 3: binary ID
Abstract: The byte representation of the machine code. This is a decimal number.

Field 4: parameter format string
Abstract: This is a quoted string with tokens separated by whitespace. The number
of token is equal to the number of parameters that the command accepts.
The token format for each parameter consists of enumerated type tokens
separated by a '%' token separator. Each parameter token is composed of
three enumerated type tokens that specify the following attributes in the
following order: 'Type of parameter' , 'binary format' , 'addressing mode'.

Type of parameter
Abstract: Describes what the parameter is, used for bounds check of input variables.

type explainations
#-> UNDEFINED This will generate an assembler error.
#-> STRING This is byte data, not accepted by the scan controller at this time
#-> LENGTH This is an asciiz string preamble, not accepted by the scan controller at this time
#-> CRC This is a CRC checksum of a Scan Controller program. It can have two values:
#-> 1. A value of 0xFFFFFF is the default checksum and is ignored.
#-> 2. A computed CRC checksum. The computation of the CRC checksum is illustrated
#-> in the source code crctable.c and the corresponding program crc-gen.exe .
#-> COUNT This is a 1 byte tick count value for slew commands. 0 - 32767
#-> SN This is a serial number, not accepted by the scan controller at this time
#-> COMTYPE Communications interface. This value is always 232.
#-> PARITY Number of parity bits. 0 - none, 1 - odd, 2 - even
#-> STOPBITS Number of stop bits 1 or 2
#-> DATABITS Number of data bits. This value is always 8.
#-> SYNCDELAY Latency, in ticks, for operation of delayedsetsync and delayedunsetsync. 0 - 32767

#-> BAUD baud rate
baud rate specifier

191

val baud
1 - 2400
2 - 4800
3 - 9600
4 - 19200
5 - 38400
6 - 57600
7 - 115200

#-> AXIS Axis specifier 1 - X axis, 2 - Y axis
#-> PGMTYPE Program type, 0 - raster program , 1 - vector program.
#-> DEVICEID Device ID. 1 - X axis, 2 - Y axis, 3 - both axis.
#-> RASTERVAL Raster mode target axis, 1 - x axis, 2 - y axis
#-> PGMID Program name, 1-255
#-> RELPOS Relative position -32768 - 32767
#-> ABSPOS Absolute position -32768 - 32767
#-> RELOFFSET Relative offset -32768 - 32767

#-> GAIN Gain value 0.5 - 1.5 in an assembly language statement.
To convert the floating point gain value to an integer, multiply the gain by 32768
and retain the integer part of the result. Use the integer in the binary comand to the
scan controller.

#-> GSS global sample size 1 - 100

#-> CHANMASK Channel mask 1 - 4, 13, 14
#-> CHANID Channel id 1 - 12, 13, 14
#-> DBLWORD double word data, 4 bytes
#-> WORD word data, 2 bytes
#-> BYTE byte data
#-> CONST constant value, not used

binary format
Abstract: Describes how to format a multi-byte number for serial transmission. Note,
this section has some notation problems, the descriptions match the formatting
for the machine but the description labels do not make sense outside of my
context, for example LEWORD is formatted as a big endian word, but the label
really means little endian.

#type explainations
#-> BYTE not used
#-> LEWORD big endian, two byte value, send MSB first, LSB last.
#-> BEWORD not used
#-> LEDBLWORD middle endian, 4 byte value
Given 0x 00 01 FF FE
1 | 2 | 3 | 4
Send the bytes in the order 3 4 1 2

#-> BEDBLWORD not used

addressing mode
Abstract: the only addressing mode for parameters is immediate.

#type explainations
#-> IMM: immeadiate addressing mode. The actual value of the parameter is sent.

Field 5: command execution context
Abstract: The context a assembler operation for this command. Some commands
cannot be executed from within a program. For these commands, the
assembler will generate an error. The token is a list of enumerated
tokens separated by '|' the or connector. The or connector signifies
that the command may be assembled in multiple contexts.

#type explainations
#-> ASMR: program context, commands in a raster program.
#-> ASMV: program context, commands in a vector program.
#-> INT: interpreter context, allows all commands for the Scan Controller.
#-> TST: a command designed to test the assembler, not sent to the Scan Controller.
#-> DIS: disallowed command, command is never translated, assembler generates an error.

Field 6: number of bytes to read back
Abstract: The number of bytes to read back from the Scan Controller. This is used

192

to in conjunction with query commands that collect and interpret
data from the Scan Controller. This is a decimal number.

Field 7: readback interpretation
Abstract: Method of interpreting the data read back from the Scan Controller. Consists
of a single enumerated type token.

type explainations
###-> MEMINSPECT Program listing, currently undefined.

###-> MEMSPACE Available memory space value.
Big endian double word, 4 byte value
Given 0x 00 01 FF FE
1 | 2 | 3 | 4
get the bytes in the order 1 2 3 4

###-> IDVAL ID value.
2 bytes Boot Segment Revision <byte 1> . <byte 2>
2 bytes Firmware Revision (default 1.0) <byte 3> . <byte 4>
1 byte Hardware (default 0) <byte 5>
1 byte Device ID (default 0) <byte 6>

###-> OCALVAL Optical Calibration value.
X-Axis Output Pos Y-Axis Output Pos X-Axis Read Pos Y-Axis Read Pos

X-Axis System Gain X-Axis System Offset Y-Axis System Gain Y-Axis System Offset
#Channel 9 Word 1 Word 2 Word 3 Word 4 Word 5

Word 6 Word 7 Word 8
#Channel 10 Word 9 Word 10 Word 11 Word 12 Word 13

Word 14 Word 15 Word 16
#Channel 11 Word 17 Word 18 Word 19 Word 20 Word 21

Word 22 Word 23 Word 24
#Channel 12 Word 25 Word 26 Word 27 Word 28 Word 29

Word 30 Word 31 Word 32

###-> POSVAL Position value. 1 word, each word is two bytes, MSB first, LSB last

###-> SYNCVAL Sync readback value. 1 word, each word is two bytes, MSB first, LSB last
bit 0: sync 1
bit 1: sync 2
bit 2: sync 3
bit 3: sync 4
bit 4: sync 5
bit 5: sync 6
bit 6: sync 7
bit 7: sync 8
bit 8: sync 9
bit 9: sync 10
bit 10: sync 11
bit 11: sync 12
bit 12: sync 13 (inverted sense)
bit 13: sync 14
bit 14: Y axis servo ready
bit 15: X axis servo ready

###-> ERRORVAL Error report from ?status command.
3 words, each word is two bytes, MSB first, LSB last
word 1: Function/Program ID
0 error in PIR (communications)
1 - 255 error from program (pgm ID)
9999 system error

word 2: Command Number (the command value as a word instead of a byte)
word 3: Error Number (See Const.h for error code definitions.)

###-> SYSDATA System data, this is currently undefined.

###-> TEMPVAL Temperature value
4 words, each word is two bytes, MSB first, LSB last.
word 1: x-axis servo temperature
word 2: x-axis alternate servo temperature

193

word 3: y-axis servo temperature
word 4: y-axis alternate servo temp

###-> BOOLEAN Boolean value, 2 bytes, MSB first, LSB last, value 0 or 1
###-> NONE No readback context, bytes are thrown away.
###-> UNDEFINED Generates an assembler error.

Field 8: binary format string
Abstract: This is included as a pathetic hack for the end statement. The data is
a quoted CSV string.

#operational commands
Position:1:1:"ABSPOS%LEWORD%IMM":INT|ASMR:0:NONE:"1"
PositionXY:2:2:"ABSPOS%LEWORD%IMM ABSPOS%LEWORD%IMM":INT|ASMV:0:NONE:"2"
DeltaPosition:1:3:"RELOFFSET%LEWORD%IMM":INT|ASMR:0:NONE:"3"
DeltaPositionXY:2:4:"RELOFFSET%LEWORD%IMM RELOFFSET%LEWORD%IMM":INT|ASMV:0:NONE:"4"
Slew:2:5:"ABSPOS%LEWORD%IMM COUNT%LEWORD%IMM":INT|ASMR:0:NONE:"5"
SlewXY:3:6:"ABSPOS%LEWORD%IMM ABSPOS%LEWORD%IMM COUNT%LEWORD%IMM":INT|ASMV:0:NONE:"6"
DeltaSlew:2:7:"RELOFFSET%LEWORD%IMM COUNT%LEWORD%IMM":INT|ASMR:0:NONE:"7"
DeltaSlewXY:3:8:"RELOFFSET%LEWORD%IMM RELOFFSET%LEWORD%IMM COUNT%LEWORD%IMM":INT|ASMV:0:NONE:"8"
Repeat:0:9:"":ASMR|ASMV:0:NONE:"9"
Ifexecutepgm:2:10:"CHANID%LEWORD%IMM PGMID%LEWORD%IMM":INT|ASMR|ASMV:0:NONE:"10"
Ifexecuterasterpgm:3:11:"CHANID%LEWORD%IMM PGMID%LEWORD%IMM PGMID%LEWORD%IMM":INT|ASMV:0:NONE:"11"
Iftempokexecutepgm:2:12:"DEVICEID%LEWORD%IMM PGMID%LEWORD%IMM":INT|ASMR|ASMV:0:NONE:"12"
Iftempokexecuterasterpgm:3:13:"DEVICEID%LEWORD%IMM PGMID%LEWORD%IMM
PGMID%LEWORD%IMM":INT|ASMV:0:NONE:"13"
ExecutePgm:1:14:"PGMID%LEWORD%IMM":INT|ASMR|ASMV:0:NONE:"14"
ExecuteRasterPgm:2:15:"PGMID%LEWORD%IMM PGMID%LEWORD%IMM":INT|ASMV:0:NONE:"15"
Wait:1:16:"DBLWORD%LEDBLWORD%IMM":INT|ASMR|ASMV:0:NONE:"16"
WaitSync:1:17:"CHANID%LEWORD%IMM":INT|ASMR|ASMV:0:NONE:"17"
SetSync:1:18:"CHANMASK%LEWORD%IMM":INT|ASMR|ASMV:0:NONE:"18"
UnSetSync:1:19:"CHANMASK%LEWORD%IMM":INT|ASMR|ASMV:0:NONE:"19"
Enable:1:20:"DEVICEID%LEWORD%IMM":INT|ASMR|ASMV:0:NONE:"20"
Disable:1:21:"DEVICEID%LEWORD%IMM":INT|ASMR|ASMV:0:NONE:"21"
End:0:22:"CRC%BEDBLWORD%IMM":ASMR|ASMV:0:NONE:"22"
DeltaTweakAxis:2:23:"GAIN%LEWORD%IMM RELOFFSET%LEWORD%IMM":INT|ASMR:0:NONE:"23"
DeltaTweakAxisXY:4:24:"GAIN%LEWORD%IMM RELOFFSET%LEWORD%IMM GAIN%LEWORD%IMM
RELOFFSET%LEWORD%IMM":INT|ASMV:0:NONE:"24"
Raster:1:25:"RASTERVAL%LEWORD%IMM":INT:0:NONE:"25"
Vector:0:26:"":INT:0:NONE:"26"
TweakAxis:2:27:"GAIN%LEWORD%IMM RELOFFSET%LEWORD%IMM":INT|ASMR:0:NONE:"27"
TweakAxisXY:4:28:"GAIN%LEWORD%IMM RELOFFSET%LEWORD%IMM GAIN%LEWORD%IMM
RELOFFSET%LEWORD%IMM":INT|ASMV:0:NONE:"28"
ConfigPixelClock:6:29:"BYTE%BYTE%IMM BYTE%BYTE%IMM BYTE%BYTE%IMM BYTE%BYTE%IMM BYTE%BYTE%IMM
BYTE%BYTE%IMM":INT|ASMV|ASMR:0:NONE:"29"
CreateFlashPgm:2:30:"PGMTYPE%LEWORD%IMM PGMID%LEWORD%IMM":INT:0:NONE:"30"
PackMemory:0:31:"":INT:0:NONE:"31"
AbortPgm:0:32:"":INT|ASMV|ASMR:0:NONE:"32"
CreatePgm:2:33:"PGMTYPE%LEWORD%IMM PGMID%LEWORD%IMM":INT:0:NONE:"33"
ReleasePgm:1:34:"PGMID%LEWORD%IMM":INT:0:NONE:"34"
ComConfig:5:35:"BAUD%LEWORD%IMM DATABITS%LEWORD%IMM STOPBITS%LEWORD%IMM PARITY%LEWORD%IMM
COMTYPE%LEWORD%IMM":INT|ASMV|ASMR:0:NONE:"35"
ExitPgm:0:37:"":INT|ASMV|ASMR:0:NONE:"37"
?FreeFlashSpace:0:38:"":INT:4:MEMSPACE:"38"
?FreeRAMSpace:0:39:"":INT:4:MEMSPACE:"39"
?ID:0:41:"":INT:6:IDVAL:"41"
?Position:1:42:"AXIS%LEWORD%IMM":INT:2:POSVAL:"42"
?Temp:0:43:"":INT:8:TEMPVAL:"43"
?TempOK:1:44:"DEVICEID%LEWORD%IMM":INT:2:BOOLEAN:"44"
?OpticalCal:0:45:"":INT:64:OCALVAL:"45"
SetConfigVar:2:48:"WORD%LEWORD%IMM WORD%LEWORD%IMM":INT:0:NONE:"48"
SetGSS:1:48:"GSS%LEWORD%IMM":INT:0:NONE:"48,0,1"
SetXPRGain:1:48:"GAIN%LEWORD%IMM":INT:0:NONE:"48,0,2"
SetXPROffset:1:48:"RELOFFSET%LEWORD%IMM":INT:0:NONE:"48,0,3"
SetYPRGain:1:48:"GAIN%LEWORD%IMM":INT:0:NONE:"48,0,4"
SetYPROffset:1:48:"RELOFFSET%LEWORD%IMM":INT:0:NONE:"48,0,5"
SetSetSyncDelay:1:48:"SYNCDELAY%LEWORD%IMM":INT:0:NONE:"48,0,6"
SetUnsetSyncDelay:1:48:"SYNCDELAY%LEWORD%IMM":INT:0:NONE:"48,0,7"
WaitPositionXY:2:49:"WORD%LEWORD%IMM WORD%LEWORD%IMM":INT|ASMV:0:NONE:"49"
WaitPosition:1:50:"WORD%LEWORD%IMM":INT|ASMR:0:NONE:"50"
SaveConfigInFlash:0:53:"":INT:0:NONE:"53"
?Status:0:255:"":INT:6:ERRORVAL:"255,255,255,255,255,255,255,255,255"

194

DelayedSetSync:1:54:"CHANMASK%LEWORD%IMM":INT|ASMR|ASMV:0:NONE:"54"
DelayedUnsetSync:1:55:"CHANMASK%LEWORD%IMM":INT|ASMR|ASMV:0:NONE:"55"
NRepeat:1:56:"WORD%LEWORD%IMM":ASMR|ASMV:0:NONE:"56"
?Sync:0:57:"":INT:2:SYNCVAL:"57"

195

Program to generate CRC

/* CreatePGM statement and End statement are not included in the CRC checksum.*/

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>

unsigned int CRCtable[] = {
 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F,
 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2,
 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9,
 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423,
 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106,
 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D,
 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950,
 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7,
 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA,
 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81,
 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84,
 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB,
 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E,
 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55,
 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28,
 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F,
 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242,
 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69,
 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC,
 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693,
 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D };

int main(int argc,char *argv[]) {

FILE *infile = NULL;

196

unsigned int nCrc = 0xFFFFFFFF;
unsigned int Count = 0;
unsigned char OneByte;

if(argc != 3) {
printf("Usage: crc-gen [-h|-b] <input file>\n\

-h signifies ascii hex file.\n\
-b signifies binary file.\n");

exit (0);
}
if(!strcmp(argv[1], "-b")) {

if((infile = fopen (argv[2], "rb")) == NULL) {
printf ("Unable to open %s as the input file\n", argv[2]);
exit(1);

}
while (!feof(infile)) {

if(fread(&OneByte, 1 , 1, infile)){
Count++;
nCrc = (nCrc >> 8) ^ \
CRCtable[(unsigned char)\
 ((unsigned char) nCrc ^ OneByte)];

}
}
fclose(infile);

}
else if (!strcmp(argv[1],"-h")) {

char StringHold[4];

StringHold[2] = '\0';
if((infile = fopen (argv[2], "rt")) == NULL) {

printf ("Unable to open %s as the input file\n", argv[2]);
exit(1);

}
while (!feof(infile)) {

if(isxdigit(StringHold[0] = fgetc(infile))) {
if(isxdigit(StringHold[1] = fgetc(infile))) {

sscanf(StringHold,"%X",&OneByte);
Count++;
nCrc = (nCrc >> 8)\
 ^ CRCtable[(unsigned char)\
 ((unsigned char) nCrc ^ OneByte)];

} else {printf ("Odd hex string\n");exit (1);}
}

}
fclose(infile);

}
else {printf("Unknown file type switch\n"); exit (1);}
printf("Num Bytes = %d\nCRC = %08X\n", Count, nCrc ^ 0xFFFFFFFF);
return 0;

}

